Neuromorphic learning, working memory, and metaplasticity in nanowire networks

This page summarizes the projects mentioned and recommended in the original post on news.ycombinator.com

Our great sponsors
  • WorkOS - The modern identity platform for B2B SaaS
  • InfluxDB - Power Real-Time Data Analytics at Scale
  • SaaSHub - Software Alternatives and Reviews
  • norse

    Deep learning with spiking neural networks (SNNs) in PyTorch.

  • This gives you a ludicrous advantage over current neural net accelerators. Specifically 3-5 orders is magnitude in energy and time, as demonstrated in the BranScaleS system https://www.humanbrainproject.eu/en/science-development/focu...

    Unfortunately, that doesn't solve the problem of learning. Just because you can build efficient neuromorphic systems doesn't mean that we know how to train them. Briefly put, the problem is that a physical system has physical constraints. You can't just read the global state in NWN and use gradient descent as we would in deep learning. Rather, we have to somehow use local signals to approximate local behaviour that's helpful on a global scale. That's why they use Hebbian learning in the paper (what fires together, wires together), but it's tricky to get right and I haven't personally seen examples that scale to systems/problems of "interesting" sizes. This is basically the frontier of the field: we need local, but generalizable, learning rules that are stable across time and compose freely into higher-order systems.

    Regarding educational material, I'm afraid I haven't seen great entries for learning about SNNs in full generality. I co-author a simulator (https://github.com/norse/norse/) based on PyTorch with a few notebook tutorials (https://github.com/norse/notebooks) that may be helpful.

    I'm actually working on some open resources/course material for neuromorphic computing. So if you have any wishes/ideas, please do reach out. Like, what would a newcomer be looking for specifically?

  • notebooks

    Notebooks illustrating the use of Norse, a library for deep-learning with spiking neural networks. (by norse)

  • This gives you a ludicrous advantage over current neural net accelerators. Specifically 3-5 orders is magnitude in energy and time, as demonstrated in the BranScaleS system https://www.humanbrainproject.eu/en/science-development/focu...

    Unfortunately, that doesn't solve the problem of learning. Just because you can build efficient neuromorphic systems doesn't mean that we know how to train them. Briefly put, the problem is that a physical system has physical constraints. You can't just read the global state in NWN and use gradient descent as we would in deep learning. Rather, we have to somehow use local signals to approximate local behaviour that's helpful on a global scale. That's why they use Hebbian learning in the paper (what fires together, wires together), but it's tricky to get right and I haven't personally seen examples that scale to systems/problems of "interesting" sizes. This is basically the frontier of the field: we need local, but generalizable, learning rules that are stable across time and compose freely into higher-order systems.

    Regarding educational material, I'm afraid I haven't seen great entries for learning about SNNs in full generality. I co-author a simulator (https://github.com/norse/norse/) based on PyTorch with a few notebook tutorials (https://github.com/norse/notebooks) that may be helpful.

    I'm actually working on some open resources/course material for neuromorphic computing. So if you have any wishes/ideas, please do reach out. Like, what would a newcomer be looking for specifically?

  • WorkOS

    The modern identity platform for B2B SaaS. The APIs are flexible and easy-to-use, supporting authentication, user identity, and complex enterprise features like SSO and SCIM provisioning.

    WorkOS logo
NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a more popular project.

Suggest a related project

Related posts