-
diffusers
🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch (by ShivamShrirao)
From what I know you can train with whatever size you want. But you need software that will support it. For example, ShivamShrirao/diffusers repo seems to allow a change of dimension. Also, you need HW that would support the training, because bigger images need more VRAM, for example,Joe Penna repo is using ~23GB with 512x512px so probably it's not a valid option. But the ShivamShrirao repo has optimizations that allow to run it with less VRAM.
-
Judoscale
Save 47% on cloud hosting with autoscaling that just works. Judoscale integrates with Django, FastAPI, Celery, and RQ to make autoscaling easy and reliable. Save big, and say goodbye to request timeouts and backed-up task queues.
-
Dreambooth-Stable-Diffusion
Implementation of Dreambooth (https://arxiv.org/abs/2208.12242) by way of Textual Inversion (https://arxiv.org/abs/2208.01618) for Stable Diffusion (https://arxiv.org/abs/2112.10752). Tweaks focused on training faces, objects, and styles. (by JoePenna)
From what I know you can train with whatever size you want. But you need software that will support it. For example, ShivamShrirao/diffusers repo seems to allow a change of dimension. Also, you need HW that would support the training, because bigger images need more VRAM, for example,Joe Penna repo is using ~23GB with 512x512px so probably it's not a valid option. But the ShivamShrirao repo has optimizations that allow to run it with less VRAM.
-
A few days ago ipaddie published a guide with recommendations to use 768x768px for Dreambooth training on SD v1.5 models, with TheLastBen repo on colab. So I think 768x768px training is indeed practical.