Jupyter Notebook Performance

Open-source Jupyter Notebook projects categorized as Performance

Top 5 Jupyter Notebook Performance Projects

Performance
  • amh-code

    Complete implementations from "Algorithms for Modern Hardware"

    Project mention: Ask HN: Recommendations for high quality, free CS books online | news.ycombinator.com | 2024-03-26

    I recently stumbled on https://en.algorithmica.org/hpc/ which I absolutely loved. It's really well written, comprehensible and concise. It felt like a pleasure to read which I find really rare with CS textbooks and I feel like I've come out of it understanding how computers work a bit better

    Does anyone have any similar CS books they'd recommend? Ideally they'd be:

  • InfluxDB

    Purpose built for real-time analytics at any scale. InfluxDB Platform is powered by columnar analytics, optimized for cost-efficient storage, and built with open data standards.

    InfluxDB logo
  • gpu-benches

    collection of benchmarks to measure basic GPU capabilities

  • tsdownsample

    High-performance time series downsampling algorithms for visualization

  • Microbenchmarks

    Microbenchmarks comparing the Julia Programming language with other languages (by JuliaLang)

    Project mention: Romeo and Julia, Where Romeo Is Basic Statistics | news.ycombinator.com | 2024-03-15

    > Every language I've ever seen with garbage collection has gone through decades of "now the garbage collection is better" or "just wait until the next version, garbage collection will be better".

    Ok but the Go example I linked is already in production, right now, you can use it. This isn't a "it will get better in two releases" situation, Go's GC as of today has pause times that are sub-millisecond. The Java Shenandoah example I linked is still mostly in beta, but it's also something you can use right now, though admittedly it'll probably be awhile before it's in a mainline release.

    > This is besides the point of performance and no longer talking about reality, it's just FUD from a "what if" future.

    It's not "just FUD", there are dozens of reported security issues that have happened because of bad manual memory management problems. Off the top of my head, Heartbleed was a famous case.

    This isn't me badmouthing anyone; manual memory management is hard to get right, even for very smart people.

    > Right, but you get it by avoiding allocation and avoiding the garbage collector the same way avoiding allocation in C++ is important, but in julia it won't be woven in to the performance, it will cause big pauses.

    Fair enough, I did look at the code for the official benchmarks (https://github.com/JuliaLang/Microbenchmarks/blob/master/per...) and outside of the integer parsing code it does indeed seem to avoid dynamic allocations so I will concede that the benchmarks might be a bit more skewed compared to real-world code.

    I still get a hunch that if you compared it allocation-heavy Julia to malloc+free-heavy C++ the differences wouldn't really be that far off, but that's just a hunch and I don't have data to back that up; might be a fun test to write though, so maybe I'll try that this weekend.

    -----

    Sort of tangential, but I also do think that there's value in having decent concurrency constructs built into the language. With C++, if you stick to built-ins you are basically stuck with mutexes and despite what people like to pretend, getting correct code with mutexes is really really hard to get right, and very easy to screw up in a non-obvious way. If you allow yourself to use libraries, then you have stuff like ZeroMQ and OpenMP and stuff, so it's really not that dire realistically. However, I think there's value in having nice, easy to use concurrency constructs in the language other than mutexes, and I do wonder if as a result of that it encourages people to utilize multiple threads more frequently, because they don't have to worry about weird deadlock situations as much.

    Again, I believe Rust actually does address this because of the single-owner-enforced-at-compile-time stuff, but I haven't used it enough to really draw a conclusion on it.

  • mlscorecheck

    Testing the consistency of binary classification performance scores reported in papers

    Project mention: [N] (In)validating published ML performance scores is possible | /r/MachineLearning | 2023-11-18
  • SaaSHub

    SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives

    SaaSHub logo
NOTE: The open source projects on this list are ordered by number of github stars. The number of mentions indicates repo mentiontions in the last 12 Months or since we started tracking (Dec 2020).

Jupyter Notebook Performance discussion

Log in or Post with

Jupyter Notebook Performance related posts

  • Ask HN: Recommendations for high quality, free CS books online

    1 project | news.ycombinator.com | 26 Mar 2024
  • Algorithms for Modern Hardware – Algorithmica

    1 project | news.ycombinator.com | 14 Feb 2024
  • Run Stable Diffusion on Intel CPUs

    10 projects | news.ycombinator.com | 29 Aug 2022
  • Parca Agent rewrites eBPF in-kernel C code in Rust (using Aya-rs)

    2 projects | /r/rust | 22 May 2022

Index

What are some of the best open-source Performance projects in Jupyter Notebook? This list will help you:

Project Stars
1 amh-code 656
2 gpu-benches 239
3 tsdownsample 146
4 Microbenchmarks 87
5 mlscorecheck 11

Sponsored
Purpose built for real-time analytics at any scale.
InfluxDB Platform is powered by columnar analytics, optimized for cost-efficient storage, and built with open data standards.
www.influxdata.com

Did you konow that Jupyter Notebook is
the 13th most popular programming language
based on number of metions?