tidytable
dtplyr
tidytable | dtplyr | |
---|---|---|
26 | 24 | |
457 | 671 | |
1.1% | 0.1% | |
7.9 | 3.6 | |
5 days ago | 5 days ago | |
R | R | |
GNU General Public License v3.0 or later | GNU General Public License v3.0 or later |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
tidytable
- Tidyverse 2.0.0
-
fuzzyjoin - "Error in which(m) : argument to 'which' is not logical"
If you need speed, you should consider using dtplyr (or tidytable), or even dbplyr with duckdb.
-
tidytable v0.10.0 is now on CRAN - use tidyverse-like syntax with data.table speed
What do you think of this instead?
-
Offering several functions to create the same object in my package
Here's an example - I use this in a package I've built called tidytable. Here is the as_tidytable() function I use that uses method dispatch.
-
Dplyr performance issues (Late 2022)
If you're having performance issues with dplyr you can also try out tidytable
-
R Dialects Broke Me
I’d say tidytable is a better option these days as it supports more functions. Although I think dtplyr has improved on this front recently, but still lags. The author of tidytable contributes to dtplyr as well.
-
Why is mlr3 so under-marketed?
I know you said it 'feels much faster' which isn't exactly a data oriented comparison, but tidymodels performs very well. You can see one of the dplyr functions as step_* in tidymodels, for example mutate vs. step_mutate under recipes library. The author of tidytable, which uses data.table, had some revisions due to this conversation, just as an example.
-
Why is {dplyr} so huge, and are there any alternatives or a {dplyr} 'lite' that I can use for the basic mutate, group_by, summarize, etc?
Tidytable is what you might be looking for: https://markfairbanks.github.io/tidytable/, this will require a bit of refactoring (e.g group-bys happen as arguments in summarise/mutate). You'll get data.table like speed in a very compact & complete package.
-
Programming with R {dplyr}
People can also use tidytable and keep the same workflow they're already used to 😄
- tidytable v0.8.1 is on CRAN - it also comes with a new logo! Need data.table speed with tidyverse syntax? Check out tidytable.
dtplyr
-
Tidyverse 2.0.0
Can’t say I’ve used it, but isn’t that what dtplyr is supposed to provide?
https://dtplyr.tidyverse.org/
-
Error when trying to use dtplyr::lazy_dt, "invalid argument to unary operator"
# I am trying to follow the example at https://dtplyr.tidyverse.org/
-
Millions of rows
FYI the developer of tidytable has been developing dtplyr for the Tidyverse. You might like that too!
-
fuzzyjoin - "Error in which(m) : argument to 'which' is not logical"
If you need speed, you should consider using dtplyr (or tidytable), or even dbplyr with duckdb.
-
Best alternative to Pandas 2023?
https://dtplyr.tidyverse.org/ ?
-
R Dialects Broke Me
If you want data.table speed, but using dplyr/tidy then dtplyr is a good package to have handy. Personally I love R, and choose R + NodeJS as my gotos for everything I do, and use Python only when I have to.
-
Merging csv from environment.
Also, that dataset is quite big, and the "base" Tidyverse will be excessively slow. You should supplement the "base" Tidyverse packages (i.e. dplyr and tidyr) with either dtplyr or dbplyr (+ duckDB). I'd suggest starting with dtplyr, which should handle 10M+ rows fine.
-
mutate ( ) function is only working in code chunk I run it in. It does not change the column in my data frame other than in that one code chunk.
If you want, there's a "substitute" for dplyr called dtplyr (also part of the Tidyverse), which "translates" your dplyr/tidyr code into data.table behind the scenes, and allows you to make your modifications apply directly to the original dataset by default:
-
R process taking over 2 hours to run suddenly
Install the dtplyr package and change your code to:
-
DS student here: why use R over Python?
Get the best of both worlds (tidyverse + data.tables) with dtplyr, a data.table backend for dplyr.
What are some alternatives?
tidypolars - Tidy interface to polars
Tidier.jl - Meta-package for data analysis in Julia, modeled after the R tidyverse.
vaex - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second 🚀
root - The official repository for ROOT: analyzing, storing and visualizing big data, scientifically
dataiter - Simple, light-weight data frames for Python
box - Write reusable, composable and modular R code
Datamancer - A dataframe library with a dplyr like API
tidyr - Tidy Messy Data
ggplot2-book - ggplot2: elegant graphics for data analysis
extendr - R extension library for rust designed to be familiar to R users.
tidyexplain - 🤹♀ Animations of tidyverse verbs using R, the tidyverse, and gganimate