rebar VS datafusion-ballista

Compare rebar vs datafusion-ballista and see what are their differences.

rebar

A biased barometer for gauging the relative speed of some regex engines on a curated set of tasks. (by BurntSushi)
InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
rebar datafusion-ballista
23 12
197 1,302
- 5.6%
8.5 8.2
about 2 months ago 9 days ago
Python Rust
The Unlicense Apache License 2.0
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

rebar

Posts with mentions or reviews of rebar. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-05-08.
  • Needle: A DFA Based Regex Library That Compiles to JVM ByteCode
    3 projects | news.ycombinator.com | 8 May 2024
    The set of regex engines being compared here is pretty small, and even among backtracking regex engines, Java's is pretty slow. See: https://github.com/BurntSushi/rebar?tab=readme-ov-file#summa...

    The backtracking engines ahead of are pcre2/jit, javascript/v8, d/ldc/std-regex (technically a hybrid I believe) and regress. Java's engine is about on par with Python's and Perl's (which are both written in C).

  • Knuth–Morris–Pratt Illustrated
    2 projects | news.ycombinator.com | 16 Apr 2024
    https://github.com/BurntSushi/rebar

    For regex, you can't really distill it down to one single fastest algorithm.

    It's somewhat similar even for substring search. But certainly, the fastest algorithms are going to be the ones that make use of SIMD in some way.

  • Regex character "$" doesn't mean "end-of-string"
    1 project | news.ycombinator.com | 20 Mar 2024
    I'll add two notes to this:

    * Finite automata based regex engines don't necessarily have to be slower than backtracking engines like PCRE. Go's regexp is in practice slower in a lot of cases, but this is more a property of its implementation than its concept. See: https://github.com/BurntSushi/rebar?tab=readme-ov-file#summa... --- Given "sufficient" implementation effort, backtrackers and finite automata engines can both perform very well, with one beating the other in some cases but not in others. It depends.

    * Fun fact is that if you're iterating over all matches in a haystack (e.g., Go's `FindAll` routines), then you're susceptible to O(m * n^2) search time. This applies to all regex engines that implement some kind of leftmost match priority. See https://github.com/BurntSushi/rebar?tab=readme-ov-file#quadr... for a more detailed elaboration on this point.

  • Re2c
    4 projects | news.ycombinator.com | 22 Feb 2024
    They are extremely fast too: https://github.com/BurntSushi/rebar?tab=readme-ov-file#summa...
  • C# Regex engine is now 3rd fastest in the world
    3 projects | news.ycombinator.com | 31 Dec 2023
    I love the flourish of "in the world." I had never thought about it that way. Which makes me think if there are any regex engines that aren't in rebar that could conceivably by competitive with the top engines in rebar. I do maintained a WANTED list of engines[1], but none of them jump out to me except for maybe Nim's engine.

    Of course, there's also the question of whether the benchmarks are representative enough to make such extrapolations. I don't have a good answer for that one. All models are wrong, but, some are useful.

    [1]: https://github.com/BurntSushi/rebar/blob/96c6779b7e1cdd850b8...

  • Ugrep – a more powerful, ultra fast, user-friendly, compatible grep
    27 projects | news.ycombinator.com | 30 Dec 2023
    I'm the author of ripgrep and its regex engine.

    Your claim is true to a first approximation. But greps are line oriented, and that means there are optimizations that can be done that are hard to do in a general regex library.

    If you read my commentary in the ripgrep discussion above, you'll note that it isn't just about the benchmarks themselves being accurate, but the model they represent. Nevertheless, I linked the hypergrep benchmarks not because of Hyperscan, but because they were done by someone who isn't the author of either ripgrep or ugrep.

    As for regex benchmarks, you'll want to check out rebar: https://github.com/BurntSushi/rebar

    You can see my full thoughts around benchmark design and philosophy if you read the rebar documentation. Be warned though, you'll need some time.

    There is a fork of ripgrep with Hyperscan support: https://sr.ht/~pierrenn/ripgrep/

  • Translations of Russ Cox's Thompson NFA C Program to Rust
    3 projects | news.ycombinator.com | 2 Nov 2023
    Before getting to your actual question, it might help to look at a regex benchmark that compares engines (perhaps JITs are not the fastest in all cases!): https://github.com/BurntSushi/rebar

    In particular, the `regex-lite` engine is strictly just the PikeVM without any frills. No prefilters or literal optimizations. No other engines. Just the PikeVM.

    As to your question, the PikeVM is, essentially, an NFA simulation. The PikeVM just refers to the layering of capture state on top of the NFA simulation. But you can peel back the capture state and you're still left with a slow NFA simulation. I mention this because you seem to compare the PikeVM with "big graph structures with NFAs/DFAs." But the PikeVM is using a big NFA graph structure.

    At a very high level, the time complexity of a Thompson NFA simulation and a DFA hints strongly at the answer to your question: searching with a Thompson NFA has worst case O(m*n) time while a DFA has worst case O(n) time, where m is proportional to the size of the regex and n is proportional to the size of the haystack. That is, for each character of the haystack, the Thompson NFA is potentially doing up to `m` amount of work. And indeed, in practice, it really does need to do some work for each character.

    A Thompson NFA simulation needs to keep track of every state it is simultaneously in at any given point. And in order to compute the transition function, you need to compute it for every state you're in. The epsilon transitions that are added as part of the Thompson NFA construction (and are, crucially, what make building a Thompson NFA so fast) exacerbate this. So what happens is that you wind up chasing epsilon transitions over and over for each character.

    A DFA pre-computes these epsilon closures during powerset construction. Of course, that takes worst case O(2^m) time, which is why real DFAs aren't really used in general purpose engines. Instead, lazy DFAs are used.

    As for things like V8, they are backtrackers. They don't need to keep track of every state they're simultaneously in because they don't mind taking a very long time to complete some searches. But in practice, this can make them much faster for some inputs.

    Feel free to ask more questions. I'll stop here.

  • Compile time regular expression in C++
    5 projects | news.ycombinator.com | 12 Sep 2023
    I'd love for someone to add this to rebar[1] so that we can get a good sense of how well it does against other general purpose regex engines. It will be a little tricky to add (since the build step will require emitting a C++ program and compiling it), but it should be possible.

    [1]: https://github.com/BurntSushi/rebar

  • Stringzilla: Fastest string sort, search, split, and shuffle using SIMD
    9 projects | news.ycombinator.com | 29 Aug 2023
  • Rust vs. Go in 2023
    9 projects | news.ycombinator.com | 13 Aug 2023
    https://github.com/BurntSushi/rebar#summary-of-search-time-b...

    Further, Go refusing to have macros means that many libraries use reflection instead, which often makes those parts of the Go program perform no better than Python and in some cases worse. Rust can just generate all of that at compile time with macros, and optimize them with LLVM like any other code. Some Go libraries go to enormous lengths to reduce reflection overhead, but that's hard to justify for most things, and hard to maintain even once done. The legendary https://github.com/segmentio/encoding seems to be abandoned now and progress on Go JSON in general seems to have died with https://github.com/go-json-experiment/json .

    Many people claiming their projects are IO-bound are just assuming that's the case because most of the time is spent in their input reader. If they actually measured they'd see it's not even saturating a 100Mbps link, let alone 1-100Gbps, so by definition it is not IO-bound. Even if they didn't need more throughput than that, they still could have put those cycles to better use or at worst saved energy. Isn't that what people like to say about Go vs Python, that Go saves energy? Sure, but it still burns a lot more energy than it would if it had macros.

    Rust can use state-of-the-art memory allocators like mimalloc, while Go is still stuck on an old fork of tcmalloc, and not just tcmalloc in its original C, but transpiled to Go so it optimizes much less than LLVM would optimize it. (Many people benchmarking them forget to even try substitute allocators in Rust, so they're actually underestimating just how much faster Rust is)

    Finally, even Go Generics have failed to improve performance, and in many cases can make it unimaginably worse through -- I kid you not -- global lock contention hidden behind innocent type assertion syntax: https://planetscale.com/blog/generics-can-make-your-go-code-...

    It's not even close. There are many reasons Go is a lot slower than Rust and many of them are likely to remain forever. Most of them have not seen meaningful progress in a decade or more. The GC has improved, which is great, but that's not even a factor on the Rust side.

datafusion-ballista

Posts with mentions or reviews of datafusion-ballista. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-01-08.
  • Polars
    11 projects | news.ycombinator.com | 8 Jan 2024
    Not super on topic because this is all immature and not integrated with one another yet, but there is a scaled-out rust data-frames-on-arrow implementation called ballista that could maybe? form the backend of a polars scale out approach: https://github.com/apache/arrow-ballista
  • Rust vs. Go in 2023
    9 projects | news.ycombinator.com | 13 Aug 2023
    > Is Rust's compile-time GC about something other than performance somehow?

    AFAIK, memory safety and language features as RAII is also available in C++, for instance. About the reasons for slow compilation, take a look at https://www.reddit.com/r/rust/comments/xna9mb/why_are_rust_p...

    Not having a GC is also about not having a runtime as you mention (e.g. nice for creating Python extensions and embedded systems programming) and also more runtime deterministic performance: on that, if I'm not mistaken that was the reason for Discourse switching to Rust and also, e.g.: "the choice of Rust as the main execution language avoids the overhead of GC pauses and results in deterministic processing times" https://github.com/apache/arrow-ballista/blob/main/README.md

  • Ballista (Rust) vs Apache Spark. A Tale of Woe.
    1 project | /r/dataengineering | 7 Jul 2023
  • Evolution and Trends of Data Engineering 2022/23
    1 project | /r/dataengineering | 19 May 2023
    Ballista (Arrow-Rust), which is largely inspired by Apache Spark, there are some interesting differences.
  • Data Engineering with Rust
    5 projects | /r/rust | 9 May 2023
    https://github.com/jorgecarleitao/arrow2 https://github.com/apache/arrow-datafusion https://github.com/apache/arrow-ballista https://github.com/pola-rs/polars https://github.com/duckdb/duckdb
  • Any job processing framework like Spark but in Rust?
    4 projects | /r/dataengineering | 23 Mar 2023
  • Is Apache Arrow DataFusion and Ballista the future of big data engineering/science?
    1 project | /r/dataengineering | 11 Mar 2023
    Source: https://github.com/apache/arrow-ballista
  • Pure Python Distributed SQL Engine
    9 projects | news.ycombinator.com | 30 Dec 2022
    Can you explain how this might differ from something like https://github.com/apache/arrow-ballista

    I've seen several variants of "next-gen" spark, but nowhere have I really seen the different tradeoffs/advantages/disadvantages between them.

  • Scala or Rust? which one will rule in future?
    4 projects | /r/dataengineering | 23 Dec 2022
  • Welcome to Comprehensive Rust
    10 projects | news.ycombinator.com | 22 Dec 2022
    Rust has amazing integration with Python through PyO3 [1] so see it like a safe alternative for high performance calculations. The ecosystem itself is starting to come together exciting projects like Polars [2] (Pandas alternative), nalgebra [3], Datafusion [4] and Ballista [5]

    [1] https://github.com/PyO3/pyo3

    [2] https://github.com/pola-rs/polars/

    [3] https://docs.rs/nalgebra/latest/nalgebra/

    [4] https://github.com/apache/arrow-datafusion

    [5] https://github.com/apache/arrow-ballista

What are some alternatives?

When comparing rebar and datafusion-ballista you can also consider the following projects:

Rebar3 - Erlang build tool that makes it easy to compile and test Erlang applications and releases.

duckdb - DuckDB is an in-process SQL OLAP Database Management System

cl-ppcre - Common Lisp regular expression library

lance - Modern columnar data format for ML and LLMs implemented in Rust. Convert from parquet in 2 lines of code for 100x faster random access, vector index, and data versioning. Compatible with Pandas, DuckDB, Polars, Pyarrow, with more integrations coming..

hypergrep - Recursively search directories for a regex pattern

seafowl - Analytical database for data-driven Web applications 🪶

StringZilla - Up to 10x faster strings for C, C++, Python, Rust, and Swift, leveraging SWAR and SIMD on Arm Neon and x86 AVX2 & AVX-512-capable chips to accelerate search, sort, edit distances, alignment scores, etc 🦖

connector-x - Fastest library to load data from DB to DataFrames in Rust and Python

moar - Moar is a pager. It's designed to just do the right thing without any configuration.

opteryx - 🦖 A SQL-on-everything Query Engine you can execute over multiple databases and file formats. Query your data, where it lives.

bat - A cat(1) clone with wings.

sqlglot - Python SQL Parser and Transpiler