polars
modin
polars | modin | |
---|---|---|
149 | 11 | |
31,656 | 9,998 | |
1.6% | 0.4% | |
10.0 | 8.9 | |
5 days ago | 7 days ago | |
Rust | Python | |
GNU General Public License v3.0 or later | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
polars
-
Using Polars in Rust for high-performance data analysis
If you want to get into Polars, the library is very well documented, and I’d recommend you check out their getting started tutorial, their API docs, and when you’re all set up, you can also check out their Cookbooks to learn about many of the standard operations within Polars.
-
Why Polars rewrote its Arrow string data type
This is false. The polars api has used smart string for a long time.
https://github.com/pola-rs/polars/blob/32a2325b55f9bce81d019...
- Polars releases v1.0.0 – a Pandas alternative
- Polars Releases v1.0.0
- Big Data Is Dead
-
Why Python's Integer Division Floors (2010)
This is because 0.1 is in actuality the floating point value value 0.1000000000000000055511151231257827021181583404541015625, and thus 1 divided by it is ever so slightly smaller than 10. Nevertheless, fpround(1 / fpround(1 / 10)) = 10 exactly.
I found out about this recently because in Polars I defined a // b for floats to be (a / b).floor(), which does return 10 for this computation. Since Python's correctly-rounded division is rather expensive, I chose to stick to this (more context: https://github.com/pola-rs/polars/issues/14596#issuecomment-...).
-
Polars
https://github.com/pola-rs/polars/releases/tag/py-0.19.0
-
Stuff I Learned during Hanukkah of Data 2023
That turned out to be related to pola-rs/polars#11912, and this linked comment provided a deceptively simple solution - use PARSE_DECLTYPES when creating the connection:
- Polars 0.20 Released
- Segunda linguagem
modin
- The Distributed Tensor Algebra Compiler (2022)
-
A Polars exploration into Kedro
The interesting thing about Polars is that it does not try to be a drop-in replacement to pandas, like Dask, cuDF, or Modin, and instead has its own expressive API. Despite being a young project, it quickly got popular thanks to its easy installation process and its “lightning fast” performance.
-
Modern Polars: an extensive side-by-side comparison of Polars and Pandas
Yeah, tried Polars a couple of times: the API seems worse than Pandas to me too. eg the decision only to support autoincrementing integer indexes seems like it would make debugging "hmmm, that answer is wrong, what exactly did I select?" bugs much more annoying. Polars docs write "blazingly fast" all over them but I doubt that is a compelling point for people using single-node dataframe libraries. It isn't for me.
Modin (https://github.com/modin-project/modin) seems more promising at this point, particularly since a migration path for standing Pandas code is highly desirable.
-
Polars: The Next Big Python Data Science Library... written in RUST?
If anyone wants a faster version of pandas it’s not hard to find, modin for example uses multiple cores to speed it up, so if you have 4 cores it’s about 4 times faster than pandas, and has the same API as pandas.
-
Working with more than 10gb csv
Modin should fit. It implements Pandas APIs with e.g. Ray as backend. https://github.com/modin-project/modin
- Modern Python Performance Considerations
-
I made a video about efficient memory use in pandas dataframes!
If you really want speed you should try modin.pandas which makes pandas multi-threaded.
-
Almost no one knows how easily you can optimize your AI models
I am guessing XGB is fairly optimised as it is. If you would want to use the sklearn libraries with pandas, look into Modin
-
TIL about modin.pandas which significantly speeds up pandas if you import modin.pandas instead of pandas.
Source
- How to Speed Up Pandas with 1 Line of Code
What are some alternatives?
datatable - A Python package for manipulating 2-dimensional tabular data structures
mars - Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.
DataFrames.jl - In-memory tabular data in Julia
fugue - A unified interface for distributed computing. Fugue executes SQL, Python, Pandas, and Polars code on Spark, Dask and Ray without any rewrites.
vaex - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second 🚀
swifter - A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner
datafusion - Apache DataFusion SQL Query Engine
PandasGUI - A GUI for Pandas DataFrames
Apache Arrow - Apache Arrow is the universal columnar format and multi-language toolbox for fast data interchange and in-memory analytics
PyFunctional - Python library for creating data pipelines with chain functional programming
PyO3 - Rust bindings for the Python interpreter
eland - Python Client and Toolkit for DataFrames, Big Data, Machine Learning and ETL in Elasticsearch