memory-efficient-attention-pytorch
DALLE-pytorch
memory-efficient-attention-pytorch | DALLE-pytorch | |
---|---|---|
2 | 20 | |
227 | 5,598 | |
- | 0.4% | |
6.1 | 2.5 | |
almost 2 years ago | 11 months ago | |
Python | Python | |
MIT License | MIT License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
memory-efficient-attention-pytorch
-
[Discussion] Fine tune model for long context
Check these efficient attention mechanism which are almost a drop in replacement: efficient attention flash attention
-
Will Transformers Take over Artificial Intelligence?
I would recommend Routing Transformer https://github.com/lucidrains/routing-transformer but the real truth is nothing beats full attention. Luckily, someone recently figured out how to get past the memory bottleneck. https://github.com/lucidrains/memory-efficient-attention-pyt...
DALLE-pytorch
- The Eleuther AI Mafia
-
Thoughts on AI image generators from text
Here you go: https://github.com/lucidrains/DALLE-pytorch
-
[P] DALL·E Mini & Mega demo and production API
Here are some other implementations of Dalle clones in Pytorch by various authors in the ML and DL community: https://github.com/lucidrains/DALLE-pytorch
- New text-to-image network from Google beats DALL-E
-
[Project] DALL-3 - generate better images with fewer tokens through clip guided diffusion
If in general DDPM > GAN > VAE, why do transformer image generators all use VQVAE to decode images? Wouldn't it be better to use a diffusion model? I was wondering about this and started experimenting with different ways to decode vector-quantized embeddings with a diffusion model - see discussion here After a lot of trial and error I got something that works pretty well.
- Still waiting for dall-e
-
Ask HN: Computer Vision Project Ideas?
- "Discrete VAE", used as the backbone for OpenAI's DALL-E, reimplimented here (and other places) https://github.com/lucidrains/DALLE-pytorch (code for training a discrete VAE)
-
Crawling@Home: Help Build The Worlds Largest Image-Text Pair Dataset!
Here's the DALLE-pytorch git repo.
-
(from the discord stream) I'm so hyped for this game. This generation is really good.
I am very excited, when AI Dungeon was released and seeing them filtering stuff, I thought that one day there will be an open source version of this without filters, the same goes for any future open sourced GPT-X. Now if we can get to train an open source DALL-E too and integrate it on NovelAI. Wouldn't that be even more awesome?
-
Wann habt Ihr euch das letzte Mal wie ein Kind über eine Sache gefreut?
Vielleicht bei https://github.com/lucidrains/DALLE-pytorch und https://github.com/kobiso/DALLE-reproduction
What are some alternatives?
flash-attention - Fast and memory-efficient exact attention
DALLE2-pytorch - Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch
vit-pytorch - Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
DALL-E - PyTorch package for the discrete VAE used for DALL·E.
performer-pytorch - An implementation of Performer, a linear attention-based transformer, in Pytorch
Compact-Transformers - Escaping the Big Data Paradigm with Compact Transformers, 2021 (Train your Vision Transformers in 30 mins on CIFAR-10 with a single GPU!)
open_clip - An open source implementation of CLIP.
memory-efficient-attention-pyt
deep-daze - Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). Technique was originally created by https://twitter.com/advadnoun
routing-transformer - Fully featured implementation of Routing Transformer
CoCa-pytorch - Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch