Hopscotch map
Hashmaps
Our great sponsors
Hopscotch map | Hashmaps | |
---|---|---|
3 | 0 | |
630 | 250 | |
- | - | |
0.0 | 0.0 | |
6 days ago | over 1 year ago | |
C++ | C++ | |
MIT License | MIT License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Hopscotch map
-
boost::unordered map is a new king of data structures
Unordered hash map shootout CMAP = https://github.com/tylov/STC KMAP = https://github.com/attractivechaos/klib PMAP = https://github.com/greg7mdp/parallel-hashmap FMAP = https://github.com/skarupke/flat_hash_map RMAP = https://github.com/martinus/robin-hood-hashing HMAP = https://github.com/Tessil/hopscotch-map TMAP = https://github.com/Tessil/robin-map UMAP = std::unordered_map Usage: shootout [n-million=40 key-bits=25] Random keys are in range [0, 2^25). Seed = 1656617916: T1: Insert/update random keys: KMAP: time: 1.949, size: 15064129, buckets: 33554432, sum: 165525449561381 CMAP: time: 1.649, size: 15064129, buckets: 22145833, sum: 165525449561381 PMAP: time: 2.434, size: 15064129, buckets: 33554431, sum: 165525449561381 FMAP: time: 2.112, size: 15064129, buckets: 33554432, sum: 165525449561381 RMAP: time: 1.708, size: 15064129, buckets: 33554431, sum: 165525449561381 HMAP: time: 2.054, size: 15064129, buckets: 33554432, sum: 165525449561381 TMAP: time: 1.645, size: 15064129, buckets: 33554432, sum: 165525449561381 UMAP: time: 6.313, size: 15064129, buckets: 31160981, sum: 165525449561381 T2: Insert sequential keys, then remove them in same order: KMAP: time: 1.173, size: 0, buckets: 33554432, erased 20000000 CMAP: time: 1.651, size: 0, buckets: 33218751, erased 20000000 PMAP: time: 3.840, size: 0, buckets: 33554431, erased 20000000 FMAP: time: 1.722, size: 0, buckets: 33554432, erased 20000000 RMAP: time: 2.359, size: 0, buckets: 33554431, erased 20000000 HMAP: time: 0.849, size: 0, buckets: 33554432, erased 20000000 TMAP: time: 0.660, size: 0, buckets: 33554432, erased 20000000 UMAP: time: 2.138, size: 0, buckets: 31160981, erased 20000000 T3: Remove random keys: KMAP: time: 1.973, size: 0, buckets: 33554432, erased 23367671 CMAP: time: 2.020, size: 0, buckets: 33218751, erased 23367671 PMAP: time: 2.940, size: 0, buckets: 33554431, erased 23367671 FMAP: time: 1.147, size: 0, buckets: 33554432, erased 23367671 RMAP: time: 1.941, size: 0, buckets: 33554431, erased 23367671 HMAP: time: 1.135, size: 0, buckets: 33554432, erased 23367671 TMAP: time: 1.064, size: 0, buckets: 33554432, erased 23367671 UMAP: time: 5.632, size: 0, buckets: 31160981, erased 23367671 T4: Iterate random keys: KMAP: time: 0.748, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 CMAP: time: 0.627, size: 23367671, buckets: 33218751, repeats: 8, sum: 4465059465719680 PMAP: time: 0.680, size: 23367671, buckets: 33554431, repeats: 8, sum: 4465059465719680 FMAP: time: 0.735, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 RMAP: time: 0.464, size: 23367671, buckets: 33554431, repeats: 8, sum: 4465059465719680 HMAP: time: 0.719, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 TMAP: time: 0.662, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 UMAP: time: 6.168, size: 23367671, buckets: 31160981, repeats: 8, sum: 4465059465719680 T5: Lookup random keys: KMAP: time: 0.943, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 CMAP: time: 0.863, size: 23367671, buckets: 33218751, lookups: 34235332, found: 29040438 PMAP: time: 1.635, size: 23367671, buckets: 33554431, lookups: 34235332, found: 29040438 FMAP: time: 0.969, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 RMAP: time: 1.705, size: 23367671, buckets: 33554431, lookups: 34235332, found: 29040438 HMAP: time: 0.712, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 TMAP: time: 0.584, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 UMAP: time: 1.974, size: 23367671, buckets: 31160981, lookups: 34235332, found: 29040438
-
Any suggestions for resources to optimize for memory allocation/reallocation?
using an open-addressing hash table, such as abseil flat_hash_map or tessil/hopscotch-map
Hashmaps
We haven't tracked posts mentioning Hashmaps yet.
Tracking mentions began in Dec 2020.
What are some alternatives?
C++ B-tree - Git mirror of the official (mercurial) repository of cpp-btree
sparsehash-c11 - Experimental C++11 version of sparsehash
pybind11 - Seamless operability between C++11 and Python
PEGTL - Parsing Expression Grammar Template Library
stx-btree - OBSOLETE, contained in https://github.com/tlx/tlx - STX B+ Tree C++ Template Classes -
LSHBOX - A c++ toolbox of locality-sensitive hashing (LSH), provides several popular LSH algorithms, also support python and matlab.
sparsehash - C++ associative containers
FunctionalPlus - Functional Programming Library for C++. Write concise and readable C++ code.
dynamic_bitset - Simple Useful Libraries: C++17/20 header-only dynamic bitset