ffi-overhead VS go

Compare ffi-overhead vs go and see what are their differences.

ffi-overhead

comparing the c ffi (foreign function interface) overhead on various programming languages (by dyu)
Our great sponsors
  • WorkOS - The modern identity platform for B2B SaaS
  • InfluxDB - Power Real-Time Data Analytics at Scale
  • SaaSHub - Software Alternatives and Reviews
ffi-overhead go
19 2,068
639 119,564
- 1.2%
0.0 10.0
10 months ago 5 days ago
C Go
Apache License 2.0 BSD 3-clause "New" or "Revised" License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

ffi-overhead

Posts with mentions or reviews of ffi-overhead. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-04-26.
  • 3 years of fulltime Rust game development, and why we're leaving Rust behind
    21 projects | news.ycombinator.com | 26 Apr 2024
    The overhead for Go in benchmarks is insane in contrast to other languages - https://github.com/dyu/ffi-overhead Are there reasons why Go does not copy what Julia does?
  • Can Fortran survive another 15 years?
    7 projects | news.ycombinator.com | 1 May 2023
    What about the other benchmarks on the same site? https://docs.sciml.ai/SciMLBenchmarksOutput/stable/Bio/BCR/ BCR takes about a hundred seconds and is pretty indicative of systems biological models, coming from 1122 ODEs with 24388 terms that describe a stiff chemical reaction network modeling the BCR signaling network from Barua et al. Or the discrete diffusion models https://docs.sciml.ai/SciMLBenchmarksOutput/stable/Jumps/Dif... which are the justification behind the claims in https://www.biorxiv.org/content/10.1101/2022.07.30.502135v1 that the O(1) scaling methods scale better than O(log n) scaling for large enough models? I mean.

    > If you use special routines (BLAS/LAPACK, ...), use them everywhere as the respective community does.

    It tests with and with BLAS/LAPACK (which isn't always helpful, which of course you'd see from the benchmarks if you read them). One of the key differences of course though is that there are some pure Julia tools like https://github.com/JuliaLinearAlgebra/RecursiveFactorization... which outperform the respective OpenBLAS/MKL equivalent in many scenarios, and that's one noted factor for the performance boost (and is not trivial to wrap into the interface of the other solvers, so it's not done). There are other benchmarks showing that it's not apples to apples and is instead conservative in many cases, for example https://github.com/SciML/SciPyDiffEq.jl#measuring-overhead showing the SciPyDiffEq handling with the Julia JIT optimizations gives a lower overhead than direct SciPy+Numba, so we use the lower overhead numbers in https://docs.sciml.ai/SciMLBenchmarksOutput/stable/MultiLang....

    > you must compile/write whole programs in each of the respective languages to enable full compiler/interpreter optimizations

    You do realize that a .so has lower overhead to call from a JIT compiled language than from a static compiled language like C because you can optimize away some of the bindings at the runtime right? https://github.com/dyu/ffi-overhead is a measurement of that, and you see LuaJIT and Julia as faster than C and Fortran here. This shouldn't be surprising because it's pretty clear how that works?

    I mean yes, someone can always ask for more benchmarks, but now we have a site that's auto updating tons and tons of ODE benchmarks with ODE systems ranging from size 2 to the thousands, with as many things as we can wrap in as many scenarios as we can wrap. And we don't even "win" all of our benchmarks because unlike for you, these benchmarks aren't for winning but for tracking development (somehow for Hacker News folks they ignore the utility part and go straight to language wars...).

    If you have a concrete change you think can improve the benchmarks, then please share it at https://github.com/SciML/SciMLBenchmarks.jl. We'll be happy to make and maintain another.

  • When dealing with C, when is Go slow?
    1 project | /r/golang | 16 Apr 2023
    If you're calling back and forth between C and Go in a performance critical way. It's one of the slowest languages for wrapping C that there is. I've personally hit this bottleneck in numerous projects, wrapping things like libutp and sqlite. See also https://github.com/dyu/ffi-overhead
  • Understanding N and 1 queries problem
    3 projects | news.ycombinator.com | 2 Jan 2023
    Piling on about overhead (and SQLite), many high-level languages take some hit for using an FFI. So you're still incentivized to avoid tons of SQLite calls.

    https://github.com/dyu/ffi-overhead

  • Are there plans to improve concurrency in Rust?
    8 projects | /r/rust | 26 Dec 2022
    Go doesn't even have native thread stacks. When call any FFI function Go has to switch over to an on-demand stack and coordinate the goroutine and the runtime to avoid preemption and starvation. This is part of why Go's calling overhead is over 30x slower than C/C++/Rust (source). It's understandbly become Go community culture to act like FFI is just not even an option and reinvent everything in Go, but that reinvented Go suffers from these other problems plus many more (such as optimizing far worse than GCC or LLVM).
  • Comparing the C FFI overhead on various languages
    1 project | /r/patient_hackernews | 14 May 2022
    1 project | /r/hackernews | 14 May 2022
    4 projects | news.ycombinator.com | 14 May 2022
    Some of the results look outdated. The Dart results look bad (25x slower than C), but looking at the code (https://github.com/dyu/ffi-overhead/tree/master/dart) it appears to be five years old. Dart has a new FFI as of Dart 2.5 (2019): https://medium.com/dartlang/announcing-dart-2-5-super-charge... I'm curious how the new FFI would fare in these benchmarks.
  • Would docker be faster if it were written in rust?
    3 projects | /r/rust | 18 Feb 2022
    In that case, the libcontainer library would be faster if written in most other languages seeing as Go has unfortunate C-calling performance. In this FFI benchmark Rust is on par with C with 1193ms (total benchmarking time), while Go took 37975ms doing the same.
  • Using Windows API in Julia?
    3 projects | /r/Julia | 1 Feb 2022
    Hi there folks! I'm going to call the Windows API as rapidly as possible and will be doing some calculations with the results, and I thought Julia might be perfect for this task as its FFI is impressively fast, and of course, Julia is fast regarding numbers as well :).

go

Posts with mentions or reviews of go. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-04-26.
  • From Homemade HTTP Router to New ServeMux
    4 projects | dev.to | 26 Apr 2024
    net/http: add methods and path variables to ServeMux patterns Discussion about ServeMux enhancements
  • Building a Playful File Locker with GoFr
    4 projects | dev.to | 19 Apr 2024
    Make sure you have Go installed https://go.dev/.
  • Fastest way to get IPv4 address from string
    1 project | news.ycombinator.com | 14 Apr 2024
  • We now have crypto/rand back ends that ~never fail
    1 project | news.ycombinator.com | 14 Apr 2024
  • Why Go is great choice for Software engineering.
    2 projects | dev.to | 7 Apr 2024
    The Go Programming Language
  • OpenBSD 7.5 Released
    5 projects | news.ycombinator.com | 5 Apr 2024
    When Go first shipped, it was already well-documented that the only stable ABI on some platforms was via dynamic libraries (such as libc) provided by said platforms. Go knowingly and deliberately ignored this on the assumption that they can get away with it. And then this happened:

    https://github.com/golang/go/issues/16606

    If that's not "getting burned", I don't know what is. "Trying to provide a nice feature" is an excuse, and it can be argued that it is a valid one, but nevertheless they knew that they were using an unstable ABI that could be pulled out from under them at any moment, and decided that it's worth the risk. I don't see what that has to do with "not being as broadly compatible as they had hoped", since it was all known well in advance.

  • Go's Error Handling Is Perfect
    2 projects | news.ycombinator.com | 5 Apr 2024
    Sadly, I think that is indeed radically different from Go’s design. Go lacks anything like sum types, and proposals to add them to the language have revealed deep issues that have stalled any development. See https://github.com/golang/go/issues/57644
  • Golang: out-of-box backpressure handling with gRPC, proven by a Grafana dashboard
    4 projects | dev.to | 3 Apr 2024
    I've been writing a lot about Go and gRPC lately:
  • Go Enums Still Suck
    2 projects | news.ycombinator.com | 28 Mar 2024
    I have a mountain of respect for Bell Labs and its contributions to the public welfare, and a lot of respect for the current group of alumni, mostly at Google, and mostly affiliated to a greater or lesser degree with golang. I have my differences with one or two of them (Pike telegraphs a wildly overcompensated imposter syndrome, but he’s almost as much of a genius as he acts like he is and who am I to judge on an overcompensated imposter syndrome, moreover when the guy in at the next desk over is Ken Thompson, who wouldn’t be a little intimidated by the legend).

    With that said, golang is too opinionated for its level of adoption, too out-of-touch with emerging consensus (and I’m being generous with “emerging” here, the Either monad is more than an emerging consensus around the right default for error handling), and too insular a leadership to be, in my personal opinion, a key contender outside some narrow niches.

    I’m aware that there are avid advocates for golang on HN, and that I’m liable to upset some of them by saying so, so I’m going to use some examples to illustrate my point and to illustrate that I’ve done my homework before being critical.

    Many, including myself, became aware of what is now called golang via this presentation at Google in 2007 (https://youtu.be/hB05UFqOtFA) introducing Newsqueak, a language Pike was pushing back in the mid-90s with what seems to be limited enthusiasm no greater than the enthusiasm for its predecessor Squeak. Any golang hacker will immediately recognize the language taking shape on the slides.

    I’ve been dabbling with golang for something like a decade now, because I really want to like it. But like a lot of the late labs stuff it seems to have suffered from the dangerous combination of the implications of Richard Gabriel’s Worse is Better observation: it was simpler, faster, cheaper, and ultimately more successful to incrementally adapt innovations from Plan9 into Linux (and other Unices), to adapt innovations from sam and acme into nvim/emacs (and now VSCode), and to adapt channel-based and other principled concurrency from Newsqueak/golang (not to mention Erlang and other more full-throated endorsements of that region of the design space) into now countless other languages ranging from things like TypeScript and Rust at the high end of adoption all the way to things like Haskell at more moderate levels of adoption. Ironically enough, the success of UTF-8 (a compromise for the non-ASCII world but the compromise that made it happen at all) is this same principle in action via the same folks!

    And golang would be fine as yet another interesting language serving as a testbed for more pragmatic applications of radical ideas: but it’s got corporate sponsorship that puts Sun Microsystems and Java to shame in scale and scope, but done quietly enough to not set off the same alarm bells.

    The best example of this is probably this GitHub issue: https://github.com/golang/go/issues/19991 (though there are countless like it). I’ve worked with Tony Arcieri, he’s brilliant and humble and hard-working and while we haven’t kept in touch, I keep an eye out, and he’s clearly passionate about the success of golang. But proposal after proposal for some variation of the Either monad has died on procedural grounds for nearly a decade, all while being about the only thing that everyone else agrees on in modern industrial PLT: TypeScript supports it, Rust supports it, C++ de-facto supports it via things like abseil and folly, and of course the hard-core functional community never even bothered with something worse in the modern era. You can even kind of do it, but there are intentional limitations in the way generics get handled across compilation units to ensure it never gets adopted as a community-driven initiative. Try if you don’t believe me (my golang code has a Result type via emacs lisp I wrote).

    Another example is the really weird compilation chain: countless serious people have weighed in here, I’ll elide all the classics because most people making these arguments have their own favorite language and they’ve all been on HN dozens of times, but a custom assembly language is a weird thing to have done, almost no one outside the hardcore golang community thinks it’s sane, the problems is creates for build systems and FFI and just everything about actually running the stuff are completely unnecessary: there are other IRs, not all of them are LLVM IR if you’ve got some beef with LLVM IR, and given that go doesn’t seriously target FFI as more than a weird black sheep (cgo) there’s, ya know, assembly language. It’s a parting shot from the Plan9 diehards with the industrial clout to make it stick.

    The garbage collection story is getting better but it’s an acknowledged handicap in a MxN threading model context, it’s not a secret or controversial even among the maintainers. See the famous “Two Knobs” talk.

    Raw pointers, sum types, dependency management, build, generics that never get there, FFI: solved problem after solved problem killed by pocket veto, explained away, minimized, all with mega-bucks, quiet as a gopher corporate sponsorship fighting a Cold War against Sun and the JVM that doesn’t exist anymore marketed by appealing to the worst instincts of otherwise unimpeachable luminaries of computing.

    There is great software written in golang by engineers I aspire to as role models (TailScale and Brad respectively as maybe the best example). I had to get serious about learning golang and how to work around its ideologically-motivated own-goals because I got serious about WebRTC and Pion (another great piece of software). But it sucks. I dread working on that part of the stack.

    Go enums do suck, but that’s because we pay a very heavy price for golang being mainstream at all: we’ve thrown away ZooKeeper and engineer-millennia of garbage-collector work and countless other treasures, it sucks oxygen out of the room on more plausible C successors like D and Jai and Nim and Zig and V and (it pains me to admit but it’s true) Rust.

    Yes there is great software in golang, tons of it. Yes there are iconic legends who are passionate about it, yes it brought new stuff to the party and the mainstream.

    But the cost was too high.

  • GoFetch: New side-channel attack using data memory-dependent prefetchers
    1 project | news.ycombinator.com | 22 Mar 2024
    It seems to be userspace accessible: https://github.com/golang/go/issues/66450

What are some alternatives?

When comparing ffi-overhead and go you can also consider the following projects:

sqlite

v - Simple, fast, safe, compiled language for developing maintainable software. Compiles itself in <1s with zero library dependencies. Supports automatic C => V translation. https://vlang.io

krustlet - Kubernetes Rust Kubelet

TinyGo - Go compiler for small places. Microcontrollers, WebAssembly (WASM/WASI), and command-line tools. Based on LLVM.

glmark2 - glmark2 is an OpenGL 2.0 and ES 2.0 benchmark

zig - General-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.

kutil - Go Utilities

Nim - Nim is a statically typed compiled systems programming language. It combines successful concepts from mature languages like Python, Ada and Modula. Its design focuses on efficiency, expressiveness, and elegance (in that order of priority).

lzbench - lzbench is an in-memory benchmark of open-source LZ77/LZSS/LZMA compressors

Angular - Deliver web apps with confidence 🚀

CheeseShop - Examples of using PyO3 Rust bindings for Python with little to no silliness.

golang-developer-roadmap - Roadmap to becoming a Go developer in 2020