dazzlefruit VS asyncly

Compare dazzlefruit vs asyncly and see what are their differences.

InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
dazzlefruit asyncly
1 2
2 27
- -
7.7 5.0
17 days ago 20 days ago
Rust C++
GNU General Public License v3.0 only Apache License 2.0
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

dazzlefruit

Posts with mentions or reviews of dazzlefruit. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-25.

asyncly

Posts with mentions or reviews of asyncly. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-25.
  • Why choose async/await over threads?
    11 projects | news.ycombinator.com | 25 Mar 2024
    One of the main benefits of async/await in Rust is that it can work in situations where you don't even have threads or dynamic memory. You can absolutely use it to write very concise code that's waiting on an interrupt on your microcontroller to have read some data coming in over I2C from some buffer. It's a higher level abstraction that allows your code to use concurrency (mostly) without having tons of interactions with the underlying runtime.

    Every major piece of software that I have worked on has implemented this in one form or another (even in non-modern C++ where you don't have any coroutine concepts, Apple's grand central dispatch,). If you don't then your business logic will either be very imperformantly block on IO, have a gazillion of threads that make development/debugging a living hell, or be littered with implementation details of the underlying runtime or a combination of all 3.

    If you don't use existing abstractions in the language (or through some library), you will end up building them yourselves, which is hard and probably overall inferior to widely used ones (if there are any). I have done so in the past, see https://github.com/goto-opensource/asyncly.

  • David Mazieres' tutorial and take on C++20 coroutines
    5 projects | news.ycombinator.com | 22 Feb 2021
    Keep in mind that these is a really basic building block where you can bring your own runtime and hook coroutines into it, not something that is at all usable out of the box. This is exacerbated by the fact that the C++ standard library is still lacking support for non-blocking futures/promises.

    To see how it can be used for actual asynchronous operations on a thread pool, take a look at asyncly, which I co-authored:

    https://github.com/LogMeIn/asyncly/blob/master/Test/Unit/fut...

What are some alternatives?

When comparing dazzlefruit and asyncly you can also consider the following projects:

C-Coroutines - Coroutines for C.

cppcoro - A library of C++ coroutine abstractions for the coroutines TS

coro-chat - Playing with the C++17 Coroutines TS to implement a simple chat server