array
einops
array | einops | |
---|---|---|
5 | 23 | |
201 | 9,145 | |
0.0% | 1.0% | |
4.9 | 6.4 | |
4 months ago | 20 days ago | |
C++ | Python | |
Apache License 2.0 | MIT License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
array
-
Einsum in 40 Lines of Python
I wrote a library in C++ (I know, probably a non-starter for most reading this) that I think does most of what you want, as well as some other requests in this thread (generalized to more than just multiply-add): https://github.com/dsharlet/array?tab=readme-ov-file#einstei....
A matrix multiply written with this looks like this:
enum { i = 2, j = 0, k = 1 };
-
Benchmarking 20 programming languages on N-queens and matrix multiplication
I should have mentioned somewhere, I disabled threading for OpenBLAS, so it is comparing one thread to one thread. Parallelism would be easy to add, but I tend to want the thread parallelism outside code like this anyways.
As for the inner loop not being well optimized... the disassembly looks like the same basic thing as OpenBLAS. There's disassembly in the comments of that file to show what code it generates, I'd love to know what you think is lacking! The only difference between the one I linked and this is prefetching and outer loop ordering: https://github.com/dsharlet/array/blob/master/examples/linea...
-
A basic introduction to NumPy's einsum
If you are looking for something like this in C++, here's my attempt at implementing it: https://github.com/dsharlet/array#einstein-reductions
It doesn't do any automatic optimization of the loops like some of the projects linked in this thread, but, it provides all the tools needed for humans to express the code in a way that a good compiler can turn it into really good code.
einops
- Einops
- Einops Rocks
-
Top 5 Production-Ready Open Source AI Libraries for Engineering Teams
PyTorch’s ease of use and flexibility, distributed processing, and cloud support make it a good choice for companies looking for open source production-ready solutions. It also has a large ecosystem of tools, such as ParlAI, EinOps, and Accelerate, and a very welcoming community on Slack and PyTorchDiscuss.
-
NumPy 2.0.0
https://einops.rocks/#why-use-einops-notation
-
Einsum in 40 Lines of Python
Not sure if the wrapper you’re talking about is your own custom code, but I really like using einops lately. It’s got similar axis naming capabilities and it dispatches to both numpy and pytorch
http://einops.rocks/
- Einops: Flexible and powerful tensor operations for readable and reliable code
-
Yorick is an interpreted programming language for scientific simulations
Thanks for the pointer. I can believe that a language that looks so different will find that different patterns and primitives are natural for it.
My experience from writing a lot of array-based code in NumPy/Matlab is that broadcasting absolutely has made it easier to write my code in those ecosystems. Axes of length 1 have often been in the right places already, or have been easy to insert. It's of course possible to create a big mess in any language; it seems likely that the NumPy code you saw could have been neater too.
In machine learning there can be many array dimensions floating around: batch-dims, sequence and/or channel-dims, weight matrices, and so on. It can be necessary to expand two or more dimensions, and/or line up dimensions quite carefully. Einops[1] has emerged from that community as a tool to succinctly express many operations that involve lots of array dimensions. You're likely to bump into more and more people who've used it, and again it seems there's some overlap with what Rank does. (And again, you'll see uses of Einops in the wild that are unnecessarily convoluted.)
[1] https://einops.rocks/ -- It works with all of the existing major array-based frameworks for Python (NumPy/PyTorch/Jax/etc), and the emerging array API standard for Python.
-
Torch qeuivalent to image_to_array (keras)
this is definitely what you're looking for: https://github.com/arogozhnikov/einops
-
[D] Have their been any attempts to create a programming language specifically for machine learning?
Einops all the things! https://einops.rocks/
- Delimiter-First Code
What are some alternatives?
plb2 - A programming language benchmark
opt_einsum - ⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.
c-examples - Example C code
kymatio - Wavelet scattering transforms in Python with GPU acceleration
alphafold2 - To eventually become an unofficial Pytorch implementation / replication of Alphafold2, as details of the architecture get released
d2l-en - Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 500 universities from 70 countries including Stanford, MIT, Harvard, and Cambridge.