SciMLStyle VS julia

Compare SciMLStyle vs julia and see what are their differences.

InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
SciMLStyle julia
2 350
195 44,534
11.8% 0.5%
6.1 10.0
21 days ago 4 days ago
Julia Julia
MIT License MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

SciMLStyle

Posts with mentions or reviews of SciMLStyle. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-11-19.
  • Julia as a unifying end-to-end workflow language on the Frontier exascale system
    5 projects | news.ycombinator.com | 19 Nov 2023
  • “Why I still recommend Julia”
    11 projects | news.ycombinator.com | 25 Jun 2022
    No, you do get type errors during runtime. The most common one is a MethodNotFound error, which corresponds to a dispatch not being found. This is the one that people then complain about for long stacktraces and as being hard to read (and that's a valid criticism). The reason for it is because if you do xy with a type combination that does not have a corresponding dispatch, i.e. (x::T1,y::T2) not defined anywhere, then it looks through the method table of the function, does not find one, and throws this MethodNotFound error. You will only get no error if a method is found. Now what can happen is that you can have a method to an abstract type, *(x::T1,y::AbstractArray), but `y` does not "actually" act like an AbstractArray in some way. If the way that it's "not an AbstractArray" is that it's missing some method overloads of the AbstractArray interface (https://docs.julialang.org/en/v1/manual/interfaces/#man-inte...), you will get a MethodNotFound error thrown on that interface function. Thus you will only not get an error if someone has declared `typeof(y) <: AbstractArray` and implemented the AbstractArray interface.

    However, what Yuri pointed out is that there are some packages (specifically in the statistics area) which implemented functions like `f(A::AbstractArray)` but used `for i in 1:length(A)` to iterate through x's values. Notice that the AbstractArray interface has interface functions for "non-traditional indices", including `axes(A)` which is a function to call to get "the a tuple of AbstractUnitRange{<:Integer} of valid indices". Thus these codes are incorrect, because by the definition of the interface you should be doing `for i in axes(A)` if you want to support an AbstractArray because there is no guarantee that its indices go from `1:length(A)`. Note that this was added to the `AbstractArray` interface in the v1.0 change, which is notably after the codes he referenced were written, and thus it's more that they were not updated to handle this expanded interface when the v1.0 transition occurred.

    This is important to understand because the criticisms and proposed "solutions" don't actually match the case... at all. This is not a case of Julia just letting anything through: someone had to purposefully define these functions for them to exist. And interfaces are not a solution here because there is an interface here, its rules were just not followed. I don't know of an interface system which would actually throw an error if someone does a loop `for i in 1:length(A)` in a code where `A` is then indexed by the element. That analysis is rather difficult at the compiler level because it's non-local: `length(A)` is valid since querying for the length is part of the AbstractArray interface (for good reasons), so then `1:length(A)` is valid since that's just range construction on integers, so the for loop construction itself is valid, and it's only invalid because of some other knowledge about how `A[i]` should work (this look structure could be correct if it's not used to `A[i]` but rather do something like `sum(i)` without indexing). If you want this to throw an error, the only real thing you could do is remove indexing from the AbstractArray interface and solely rely on iteration, which I'm not opposed to (given the relationship to GPUs of course), but etc. you can see the question to solving this is "what is the right interface?" not "are there even interfaces?" (of which the answer is, yes but the errors are thrown at runtime MethodNotFound instead of compile time MethodNotImplemented for undefined things, the latter would be cool for better debugging and stacktraces but isn't a solution).

    This is why the real discussions are not about interfaces as a solution, they don't solve this issue, and even further languages with interfaces also have this issue. It's about tools for helping code style. You probably should just never do `for i in 1:length(A)`, probably you should always do `for i in eachindex(A)` or `for i in axes(A)` because those iteration styles work for `Array` but also work for any `AbstractArray` and thus it's just a safer way to code. That is why there are specific mentions to not do this in style guides (for example, https://github.com/SciML/SciMLStyle#generic-code-is-preferre...), and things like JuliaFormatter automatically flag it as a style break (which would cause CI failures in organizations like SciML which enforce SciML Style formatting as a CI run with Github Actions https://github.com/SciML/ModelingToolkit.jl/blob/v8.14.1/.gi...). There's a call to add linting support for this as well, flagging it any time someone writes this code. If everyone is told to not assume 1-based indexing, formatting CI fails if it is assumed, and the linter underlines every piece of code that does it as red, (along with many other measures, which includes extensive downstream testing, fuzzing against other array types, etc.) then we're at least pretty well guarded against it. And many Julia organizations, like SciML, have these practices in place to guard against it. Yuri's specific discussion is more that JuliaStats does not.

julia

Posts with mentions or reviews of julia. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-06.
  • Top Paying Programming Technologies 2024
    19 projects | dev.to | 6 Mar 2024
    34. Julia - $74,963
  • Optimize sgemm on RISC-V platform
    6 projects | news.ycombinator.com | 28 Feb 2024
    I don't believe there is any official documentation on this, but https://github.com/JuliaLang/julia/pull/49430 for example added prefetching to the marking phase of a GC which saw speedups on x86, but not on M1.
  • Dart 3.3
    2 projects | news.ycombinator.com | 15 Feb 2024
    3. dispatch on all the arguments

    the first solution is clean, but people really like dispatch.

    the second makes calling functions in the function call syntax weird, because the first argument is privileged semantically but not syntactically.

    the third makes calling functions in the method call syntax weird because the first argument is privileged syntactically but not semantically.

    the closest things to this i can think of off the top of my head in remotely popular programming languages are: nim, lisp dialects, and julia.

    nim navigates the dispatch conundrum by providing different ways to define free functions for different dispatch-ness. the tutorial gives a good overview: https://nim-lang.org/docs/tut2.html

    lisps of course lack UFCS.

    see here for a discussion on the lack of UFCS in julia: https://github.com/JuliaLang/julia/issues/31779

    so to sum up the answer to the original question: because it's only obvious how to make it nice and tidy like you're wanting if you sacrifice function dispatch, which is ubiquitous for good reason!

  • Julia 1.10 Highlights
    1 project | news.ycombinator.com | 27 Dec 2023
    https://github.com/JuliaLang/julia/blob/release-1.10/NEWS.md
  • Best Programming languages for Data Analysis📊
    4 projects | dev.to | 7 Dec 2023
    Visit official site: https://julialang.org/
  • Potential of the Julia programming language for high energy physics computing
    10 projects | news.ycombinator.com | 4 Dec 2023
    No. It runs natively on ARM.

    julia> versioninfo() Julia Version 1.9.3 Commit bed2cd540a1 (2023-08-24 14:43 UTC) Build Info: Official https://julialang.org/ release

  • Rust std:fs slower than Python
    7 projects | news.ycombinator.com | 29 Nov 2023
    https://github.com/JuliaLang/julia/issues/51086#issuecomment...

    So while this "fixes" the issue, it'll introduce a confusing time delay between you freeing the memory and you observing that in `htop`.

    But according to https://jemalloc.net/jemalloc.3.html you can set `opt.muzzy_decay_ms = 0` to remove the delay.

    Still, the musl author has some reservations against making `jemalloc` the default:

    https://www.openwall.com/lists/musl/2018/04/23/2

    > It's got serious bloat problems, problems with undermining ASLR, and is optimized pretty much only for being as fast as possible without caring how much memory you use.

    With the above-mentioned tunables, this should be mitigated to some extent, but the general "theme" (focusing on e.g. performance vs memory usage) will likely still mean "it's a tradeoff" or "it's no tradeoff, but only if you set tunables to what you need".

  • Eleven strategies for making reproducible research the norm
    1 project | news.ycombinator.com | 25 Nov 2023
    I have asked about Julia's reproducibility story on the Guix mailing list in the past, and at the time Simon Tournier didn't think it was promising. I seem to recall Julia itself didnt have a reproducible build. All I know now is that github issue is still not closed.

    https://github.com/JuliaLang/julia/issues/34753

  • Julia as a unifying end-to-end workflow language on the Frontier exascale system
    5 projects | news.ycombinator.com | 19 Nov 2023
    I don't really know what kind of rebuttal you're looking for, but I will link my HN comments from when this was first posted for some thoughts: https://news.ycombinator.com/item?id=31396861#31398796. As I said, in the linked post, I'm quite skeptical of the business of trying to assess relative buginess of programming in different systems, because that has strong dependencies on what you consider core vs packages and what exactly you're trying to do.

    However, bugs in general suck and we've been thinking a fair bit about what additional tooling the language could provide to help people avoid the classes of bugs that Yuri encountered in the post.

    The biggest class of problems in the blog post, is that it's pretty clear that `@inbounds` (and I will extend this to `@assume_effects`, even though that wasn't around when Yuri wrote his post) is problematic, because it's too hard to write. My proposal for what to do instead is at https://github.com/JuliaLang/julia/pull/50641.

    Another common theme is that while Julia is great at composition, it's not clear what's expected to work and what isn't, because the interfaces are informal and not checked. This is a hard design problem, because it's quite close to the reasons why Julia works well. My current thoughts on that are here: https://github.com/Keno/InterfaceSpecs.jl but there's other proposals also.

  • Getaddrinfo() on glibc calls getenv(), oh boy
    10 projects | news.ycombinator.com | 16 Oct 2023
    Doesn't musl have the same issue? https://github.com/JuliaLang/julia/issues/34726#issuecomment...

    I also wonder about OSX's libc. Newer versions seem to have some sort of locking https://github.com/apple-open-source-mirror/Libc/blob/master...

    but older versions (from 10.9) don't have any lockign: https://github.com/apple-oss-distributions/Libc/blob/Libc-99...

What are some alternatives?

When comparing SciMLStyle and julia you can also consider the following projects:

SciMLSensitivity.jl - A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, adjoint methods, and more for ODEs, SDEs, DDEs, DAEs, etc.

jax - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

RecursiveArrayTools.jl - Tools for easily handling objects like arrays of arrays and deeper nestings in scientific machine learning (SciML) and other applications

NetworkX - Network Analysis in Python

Lux.jl - Explicitly Parameterized Neural Networks in Julia

Lua - Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural programming, object-oriented programming, functional programming, data-driven programming, and data description.

Flux.jl - Relax! Flux is the ML library that doesn't make you tensor

rust-numpy - PyO3-based Rust bindings of the NumPy C-API

SciPy - SciPy library main repository

Numba - NumPy aware dynamic Python compiler using LLVM

dex-lang - Research language for array processing in the Haskell/ML family

F# - Please file issues or pull requests here: https://github.com/dotnet/fsharp