ULTRA VS GreatX

Compare ULTRA vs GreatX and see what are their differences.

ULTRA

A foundation model for knowledge graph reasoning (by DeepGraphLearning)
Scout Monitoring - Free Django app performance insights with Scout Monitoring
Get Scout setup in minutes, and let us sweat the small stuff. A couple lines in settings.py is all you need to start monitoring your apps. Sign up for our free tier today.
www.scoutapm.com
featured
InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
ULTRA GreatX
1 1
383 80
7.0% -
6.0 5.4
about 1 month ago 9 months ago
Python Python
MIT License MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

ULTRA

Posts with mentions or reviews of ULTRA. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-01-10.
  • RAG Using Structured Data: Overview and Important Questions
    5 projects | news.ycombinator.com | 10 Jan 2024
    Ok, using ChatGPT and Bard (the irony lol) I learned a bit more about GNNs:

    GNNs are probabilistic and can be trained to learn representations in graph-structured data and handling complex relationships, while classical graph algorithms are specialized for specific graph analysis tasks and operate based on predefined rules/steps.

    * Why is PyG it called "Geometric" and not "Topologic" ?

    Properties like connectivity, neighborhoods, and even geodesic distances can all be considered topological features of a graph. These features remain unchanged under continuous deformations like stretching or bending, which is the defining characteristic of topological equivalence. In this sense, "PyTorch Topologic" might be a more accurate reflection of the library's focus on analyzing the intrinsic structure and connections within graphs.

    However, the term "geometric" still has some merit in the context of PyG. While most GNN operations rely on topological principles, some do incorporate notions of Euclidean geometry, such as:

    - Node embeddings: Many GNNs learn low-dimensional vectors for each node, which can be interpreted as points in a vector space, allowing geometric operations like distances and angles to be applied.

    - Spectral GNNs: These models leverage the eigenvalues and eigenvectors of the graph Laplacian, which encodes information about the geometric structure and distances between nodes.

    - Manifold learning: Certain types of graphs can be seen as low-dimensional representations of high-dimensional manifolds. Applying GNNs in this context involves learning geometric properties on the manifold itself.

    Therefore, although topology plays a primary role in understanding and analyzing graphs, geometry can still be relevant in certain contexts and GNN operations.

    * Real world applications:

    - HuggingFace has a few models [0] around things like computational chemistry [1] or weather forecasting.

    - PyGod [2] can be used for Outlier Detection (Anomaly Detection).

    - Apparently ULTRA [3] can "infer" (in the knowledge graph sense), that Michael Jackson released some disco music :-p (see the paper).

    - RGCN [4] can be used for knowledge graph link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes).

    - GreatX [5] tackles removing inherent noise, "Distribution Shift" and "Adversarial Attacks" (ex: noise purposely introduced to hide a node presence) from networks. Apparently this is a thing and the field is called "Graph Reliability" or "Reliable Deep Graph Learning". The author even has a bunch of "awesome" style lists of links! [6]

    - Finally this repo has a nice explanation of how/why to run machine learning algorithms "outside of the DB":

    "Pytorch Geometric (PyG) has a whole arsenal of neural network layers and techniques to approach machine learning on graphs (aka graph representation learning, graph machine learning, deep graph learning) and has been used in this repo [7] to learn link patterns, also known as link or edge predictions."

    --

    0: https://huggingface.co/models?pipeline_tag=graph-ml&sort=tre...

    1: https://github.com/Microsoft/Graphormer

    2: https://github.com/pygod-team/pygod

    3: https://github.com/DeepGraphLearning/ULTRA

    4: https://huggingface.co/riship-nv/RGCN

    5: https://github.com/EdisonLeeeee/GreatX

    6: https://edisonleeeee.github.io/projects.html

    7: https://github.com/Orbifold/pyg-link-prediction

GreatX

Posts with mentions or reviews of GreatX. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-01-10.
  • RAG Using Structured Data: Overview and Important Questions
    5 projects | news.ycombinator.com | 10 Jan 2024
    Ok, using ChatGPT and Bard (the irony lol) I learned a bit more about GNNs:

    GNNs are probabilistic and can be trained to learn representations in graph-structured data and handling complex relationships, while classical graph algorithms are specialized for specific graph analysis tasks and operate based on predefined rules/steps.

    * Why is PyG it called "Geometric" and not "Topologic" ?

    Properties like connectivity, neighborhoods, and even geodesic distances can all be considered topological features of a graph. These features remain unchanged under continuous deformations like stretching or bending, which is the defining characteristic of topological equivalence. In this sense, "PyTorch Topologic" might be a more accurate reflection of the library's focus on analyzing the intrinsic structure and connections within graphs.

    However, the term "geometric" still has some merit in the context of PyG. While most GNN operations rely on topological principles, some do incorporate notions of Euclidean geometry, such as:

    - Node embeddings: Many GNNs learn low-dimensional vectors for each node, which can be interpreted as points in a vector space, allowing geometric operations like distances and angles to be applied.

    - Spectral GNNs: These models leverage the eigenvalues and eigenvectors of the graph Laplacian, which encodes information about the geometric structure and distances between nodes.

    - Manifold learning: Certain types of graphs can be seen as low-dimensional representations of high-dimensional manifolds. Applying GNNs in this context involves learning geometric properties on the manifold itself.

    Therefore, although topology plays a primary role in understanding and analyzing graphs, geometry can still be relevant in certain contexts and GNN operations.

    * Real world applications:

    - HuggingFace has a few models [0] around things like computational chemistry [1] or weather forecasting.

    - PyGod [2] can be used for Outlier Detection (Anomaly Detection).

    - Apparently ULTRA [3] can "infer" (in the knowledge graph sense), that Michael Jackson released some disco music :-p (see the paper).

    - RGCN [4] can be used for knowledge graph link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes).

    - GreatX [5] tackles removing inherent noise, "Distribution Shift" and "Adversarial Attacks" (ex: noise purposely introduced to hide a node presence) from networks. Apparently this is a thing and the field is called "Graph Reliability" or "Reliable Deep Graph Learning". The author even has a bunch of "awesome" style lists of links! [6]

    - Finally this repo has a nice explanation of how/why to run machine learning algorithms "outside of the DB":

    "Pytorch Geometric (PyG) has a whole arsenal of neural network layers and techniques to approach machine learning on graphs (aka graph representation learning, graph machine learning, deep graph learning) and has been used in this repo [7] to learn link patterns, also known as link or edge predictions."

    --

    0: https://huggingface.co/models?pipeline_tag=graph-ml&sort=tre...

    1: https://github.com/Microsoft/Graphormer

    2: https://github.com/pygod-team/pygod

    3: https://github.com/DeepGraphLearning/ULTRA

    4: https://huggingface.co/riship-nv/RGCN

    5: https://github.com/EdisonLeeeee/GreatX

    6: https://edisonleeeee.github.io/projects.html

    7: https://github.com/Orbifold/pyg-link-prediction

What are some alternatives?

When comparing ULTRA and GreatX you can also consider the following projects:

Graphormer - Graphormer is a general-purpose deep learning backbone for molecular modeling.

pytorch_geometric - Graph Neural Network Library for PyTorch [Moved to: https://github.com/pyg-team/pytorch_geometric]

pyg-link-prediction - Pytorch Geometric link prediction of a homogeneous social graph.