CUDA.jl
DifferentialEquations.jl
CUDA.jl | DifferentialEquations.jl | |
---|---|---|
15 | 7 | |
1,263 | 2,917 | |
2.3% | 0.7% | |
9.5 | 6.0 | |
8 days ago | about 1 month ago | |
Julia | Julia | |
GNU General Public License v3.0 or later | GNU General Public License v3.0 or later |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
CUDA.jl
-
Ask HN: Best way to learn GPU programming?
It would also mean learning Julia, but you can write GPU kernels in Julia and then compile for NVidia CUDA, AMD ROCm or IBM oneAPI.
https://juliagpu.org/
I've written CUDA kernels and I knew nothing about it going in.
- What's your main programming language?
-
How is Julia Performance with GPUs (for LLMs)?
See https://juliagpu.org/
- Yann Lecun: ML would have advanced if other lang had been adopted versus Python
-
C++ is making me depressed / CUDA question
If you just want to do some numerical code that requires linear algebra and GPU, your best bet would be Julia or Python+JAX.
-
Parallélisation distribuée presque triviale d’applications GPU et CPU basées sur des Stencils avec…
GitHub - JuliaGPU/CUDA.jl: CUDA programming in Julia.
- Why Fortran is easy to learn
-
Generic GPU Kernels
Should have (2017) in the title.
Indeed cool to program julia directly on the GPU and Julia on GPU and this has further evolved since then, see https://juliagpu.org/
-
Announcing The Rust CUDA Project; An ecosystem of crates and tools for writing and executing extremely fast GPU code fully in Rust
I'm excited to eventually see something like JuliaGPU with support for multiple backends.
-
[Media] 100% Rust path tracer running on CPU, GPU (CUDA), and OptiX (for denoising) using one of my upcoming projects. There is no C/C++ code at all, the program shares a single rust crate for the core raytracer and uses rust for the viewer and renderer.
That's really cool! Have you looked at CUDA.jl for the Julia language? Maybe you could take some ideas from there. I am pretty sure it does the same thing you do here, and they support any arbitrary code with the limitations that you cannot allocate memory, I/O is disallowed, and badly-typed code(dynamic) will not compile.
DifferentialEquations.jl
-
Modelica
Another up-and-coming solution is Julia's simulation ecosystem [1]. It is powered by the commercial organization behind the Julia programming language, which has received DARPA funding [2] to build out these tools. This ecosystem unifies researchers in numerical methods [3], scalable compute, and domain experts in modeling engineering systems (electrical, mechanical, etc.) I believe this is where simulation is headed.
[1] https://juliahub.com/products/juliasim
[2] https://news.ycombinator.com/item?id=26425659
[3] https://docs.sciml.ai/DiffEqDocs/stable/
-
Startups are building with the Julia Programming Language
This lists some of its unique abilities:
https://docs.sciml.ai/DiffEqDocs/stable/
The routines are sufficiently generic, with regard to Julia’s type system, to allow the solvers to automatically compose with other packages and to seamlessly use types other than Numbers. For example, instead of handling just functions Number→Number, you can define your ODE in terms of quantities with physical dimensions, uncertainties, quaternions, etc., and it will just work (for example, propagating uncertainties correctly to the solution¹). Recent developments involve research into the automated selection of solution routines based on the properties of the ODE, something that seems really next-level to me.
[1] https://lwn.net/Articles/834571/
-
From Common Lisp to Julia
https://github.com/SciML/DifferentialEquations.jl/issues/786. As you could see from the tweet, it's now at 0.1 seconds. That has been within one year.
Also, if you take a look at a tutorial, say the tutorial video from 2018,
-
When is julia getting proper precompilation?
It's not faith, and it's not all from Julia itself. https://github.com/SciML/DifferentialEquations.jl/issues/785 should reduce compile times of what OP mentioned for example.
-
Julia 1.7 has been released
Let's even put raw numbers to it. DifferentialEquations.jl usage has seen compile times drop from 22 seconds to 3 seconds over the last few months.
https://github.com/SciML/DifferentialEquations.jl/issues/786
- Suggest me a Good library for scientific computing in Julia with good support for multi-core CPUs and GPUs.
-
DifferentialEquations compilation issue in Julia 1.6
https://github.com/SciML/DifferentialEquations.jl/issues/737 double posted, with the answer here. Please don't do that.
What are some alternatives?
cupynumeric - An Aspiring Drop-In Replacement for NumPy at Scale
diffeqpy - Solving differential equations in Python using DifferentialEquations.jl and the SciML Scientific Machine Learning organization
GPUCompiler.jl - Reusable compiler infrastructure for Julia GPU backends.
DiffEqBase.jl - The lightweight Base library for shared types and functionality for defining differential equation and scientific machine learning (SciML) problems
awesome-quant - A curated list of insanely awesome libraries, packages and resources for Quants (Quantitative Finance)
FFTW.jl - Julia bindings to the FFTW library for fast Fourier transforms