SaaSHub helps you find the best software and product alternatives Learn more →
CLIP Alternatives
Similar projects and alternatives to CLIP
-
-
InfluxDB
InfluxDB – Built for High-Performance Time Series Workloads. InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now.
-
-
-
qdrant
Qdrant - High-performance, massive-scale Vector Database and Vector Search Engine for the next generation of AI. Also available in the cloud https://cloud.qdrant.io/
-
stable-diffusion
Discontinued This version of CompVis/stable-diffusion features an interactive command-line script that combines text2img and img2img functionality in a "dream bot" style interface, a WebGUI, and multiple features and other enhancements. [Moved to: https://github.com/invoke-ai/InvokeAI] (by lstein)
-
-
Weaviate
Weaviate is an open-source vector database that stores both objects and vectors, allowing for the combination of vector search with structured filtering with the fault tolerance and scalability of a cloud-native database.
-
Stream
Stream - Scalable APIs for Chat, Feeds, Moderation, & Video. Stream helps developers build engaging apps that scale to millions with performant and flexible Chat, Feeds, Moderation, and Video APIs and SDKs powered by a global edge network and enterprise-grade infrastructure.
-
-
-
DALLE2-pytorch
Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch
-
-
-
-
-
-
fastdup
fastdup is a powerful, free tool designed to rapidly generate valuable insights from image and video datasets. It helps enhance the quality of both images and labels, while significantly reducing data operation costs, all with unmatched scalability.
-
-
-
BLIP
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
CLIP discussion
CLIP reviews and mentions
-
LLM-d, Kubernetes native distributed inference
Do you think https://github.com/openai/CLIP can be ran on it? LLM makes me think of chatbots but I suppose because it's inference-based it would work. Somewhat unclear on what's the difference between LLMs and inference, I think inference is the type of compute LLMs use.
I wonder if inference-d would be a fitting name.
-
We used GPT-4o for image detection with 350 similar illustrations
Yes, you could implement image similarity search using embeddings: Create embeddings for the entire image set, save the embeddings in a database, and add embeddings incrementally as new images come in. To search for a similar image, create the embedding for the image that you are looking for and compute the cosine similarity between that embedding and the embeddings in your database. The closer the cosine similarity is to 1.0 the more similar the images.
For choosing a model, the article mentions the AWS Titan multimodal model, but you’d have to pay for API access to create the embeddings. Alternatively, self-hosting the CLIP model [0] to create embeddings would avoid API costs.
Follow-up question: Would the embeddings from the llama3.2-vision models be of higher quality (contain more information) than the original CLIP model?
The llama vision models use CLIP under the hood, but they add a projection head to align with the text model and the CLIP weights are mutated during alignment training, so I assume the llama vision embeddings would be of higher quality, but I don’t know for sure. Does anybody know?
(I would love to test this quality myself but Ollama does not yet support creating image embeddings from the llama vision models - a feature request with several upvotes has been opened [1].)
[0] https://github.com/openai/CLIP
-
Anomaly Detection with FiftyOne and Anomalib
pip install -U huggingface_hub umap-learn git+https://github.com/openai/CLIP.git
-
How to Cluster Images
We will also need two more libraries: OpenAI’s CLIP GitHub repo, enabling us to generate image features with the CLIP model, and the umap-learn library, which will let us apply a dimensionality reduction technique called Uniform Manifold Approximation and Projection (UMAP) to those features to visualize them in 2D:
-
Show HN: Memories, FOSS Google Photos alternative built for high performance
Biggest missing feature for all these self hosted photo hosting is the lack of a real search. Being able to search for things like "beach at night" is a time saver instead of browsing through hundreds or thousands of photos. There are trained neural networks out there like https://github.com/openai/CLIP which are quite good.
-
Zero-Shot Prediction Plugin for FiftyOne
In computer vision, this is known as zero-shot learning, or zero-shot prediction, because the goal is to generate predictions without explicitly being given any example predictions to learn from. With the advent of high quality multimodal models like CLIP and foundation models like Segment Anything, it is now possible to generate remarkably good zero-shot predictions for a variety of computer vision tasks, including:
-
A History of CLIP Model Training Data Advances
(Github Repo | Most Popular Model | Paper | Project Page)
-
NLP Algorithms for Clustering AI Content Search Keywords
the first thing that comes to mind is CLIP: https://github.com/openai/CLIP
-
How to Build a Semantic Search Engine for Emojis
Whenever I’m working on semantic search applications that connect images and text, I start with a family of models known as contrastive language image pre-training (CLIP). These models are trained on image-text pairs to generate similar vector representations or embeddings for images and their captions, and dissimilar vectors when images are paired with other text strings. There are multiple CLIP-style models, including OpenCLIP and MetaCLIP, but for simplicity we’ll focus on the original CLIP model from OpenAI. No model is perfect, and at a fundamental level there is no right way to compare images and text, but CLIP certainly provides a good starting point.
-
COMFYUI SDXL WORKFLOW INBOUND! Q&A NOW OPEN! (WIP EARLY ACCESS WORKFLOW INCLUDED!)
in the modal card it says: pretrained text encoders (OpenCLIP-ViT/G and CLIP-ViT/L).
-
A note from our sponsor - SaaSHub
www.saashub.com | 10 Jul 2025
Stats
openai/CLIP is an open source project licensed under MIT License which is an OSI approved license.
The primary programming language of CLIP is Jupyter Notebook.