(Not) to Write a Pipeline

This page summarizes the projects mentioned and recommended in the original post on news.ycombinator.com

InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
  • couler

    Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

  • author seems to be describing the kind of patterns you might make with https://argoproj.github.io/argo-workflows/ . or see for example https://github.com/couler-proj/couler , which is an sdk for describing tasks that may be submitted to different workflow engines on the backend.

    it's a little confusing to me that the author seems to object to "pipelines" and then equate them with messaging-queues. for me at least, "pipeline" vs "workflow-engine" vs "scheduler" are all basically synonyms in this context. those things may or may not be implemented with a message-queue for persistence, but the persistence layer itself is usually below the level of abstraction that $current_problem is really concerned with. like the author says, eventually you have to track state/timestamps/logs, but you get that from the beginning if you start with a workflow engine.

    i agree with author that message-queues should not be a knee-jerk response to most problems because the LoE for edge-cases/observability/monitoring is huge. (maybe reach for a queue only if you may actually overwhelm whatever the "scheduler" can handle.) but don't build the scheduler from scratch either.. use argowf, kubeflow, or a more opinionated framework like airflow, mlflow, databricks, aws lamda or step-functions. all/any of these should have config or api that's robust enough to express rate-limit/retry stuff. almost any of these choices has better observability out-of-the-box than you can easily get from a queue. but most importantly.. they provide idioms for handling failure that data-science folks and junior devs can work with. the right way to structure code is just much more clear and things like structuring messages/events, subclassing workers, repeating/retrying tasks, is just harder to mess up.

  • argo

    Workflow Engine for Kubernetes

  • author seems to be describing the kind of patterns you might make with https://argoproj.github.io/argo-workflows/ . or see for example https://github.com/couler-proj/couler , which is an sdk for describing tasks that may be submitted to different workflow engines on the backend.

    it's a little confusing to me that the author seems to object to "pipelines" and then equate them with messaging-queues. for me at least, "pipeline" vs "workflow-engine" vs "scheduler" are all basically synonyms in this context. those things may or may not be implemented with a message-queue for persistence, but the persistence layer itself is usually below the level of abstraction that $current_problem is really concerned with. like the author says, eventually you have to track state/timestamps/logs, but you get that from the beginning if you start with a workflow engine.

    i agree with author that message-queues should not be a knee-jerk response to most problems because the LoE for edge-cases/observability/monitoring is huge. (maybe reach for a queue only if you may actually overwhelm whatever the "scheduler" can handle.) but don't build the scheduler from scratch either.. use argowf, kubeflow, or a more opinionated framework like airflow, mlflow, databricks, aws lamda or step-functions. all/any of these should have config or api that's robust enough to express rate-limit/retry stuff. almost any of these choices has better observability out-of-the-box than you can easily get from a queue. but most importantly.. they provide idioms for handling failure that data-science folks and junior devs can work with. the right way to structure code is just much more clear and things like structuring messages/events, subclassing workers, repeating/retrying tasks, is just harder to mess up.

  • InfluxDB

    Power Real-Time Data Analytics at Scale. Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.

    InfluxDB logo
NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a more popular project.

Suggest a related project

Related posts

  • Orchestration poll

    1 project | /r/dataengineering | 8 Apr 2023
  • What's the best way to inject a yaml file into an Argo workflow step?

    1 project | /r/codehunter | 8 Apr 2023
  • Cron alternative that can run a job every two weeks without convoluted tricks

    2 projects | /r/AskProgramming | 22 Jan 2023
  • Question: What tools or technologies are you looking into lately ?

    1 project | /r/devops | 18 Dec 2022
  • Recommended dind replacement for k8s 1.24

    1 project | /r/devops | 8 Nov 2022