ompi VS Klib

Compare ompi vs Klib and see what are their differences.

Our great sponsors
  • InfluxDB - Power Real-Time Data Analytics at Scale
  • WorkOS - The modern identity platform for B2B SaaS
  • SaaSHub - Software Alternatives and Reviews
ompi Klib
10 23
2,016 4,021
3.3% -
9.7 4.3
1 day ago 12 days ago
C C
GNU General Public License v3.0 or later MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

ompi

Posts with mentions or reviews of ompi. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-02-09.
  • Ask HN: Does anyone care about OpenPOWER?
    2 projects | news.ycombinator.com | 9 Feb 2024
    The commercial Linux world (see https://github.com/open-mpi/ompi/issues/4349) and other open source OSes (eg FreeBSD) seem to have lined up behind little-endian PowerPC. IBM still has a big-endian problem with AIX, IBM i, and Linux on Z.
  • Announcing Chapel 1.32
    6 projects | news.ycombinator.com | 9 Oct 2023
    Roughly, the sets of computational problems that people used (use?) MPI for. Things like numerical solvers for sparse matrices that are so big that you need to split them across your entire cluster. These still require a lot of node-to-node communication, and on top of it, the pattern is dependent on each problem (so easy solutions like map-reduce are effectively out). See eg https://www.open-mpi.org/, and https://courses.csail.mit.edu/18.337/2005/book/Lecture_08-Do... for the prototypical use case.
  • How much are you meant to comment on a code?
    1 project | /r/AskProgramming | 11 May 2023
    One of the guys at the local LUG is one of the lead maintainers of Open MPI. He told us about a comment that ran into the hundreds of lines, all for a one-line change in the code.
  • Which license to choose when you want credit
    1 project | /r/github | 12 Mar 2023
    But it would be very inconvenient to have to keep crediting everyone who's ever worked on it. If you look at old projects, their licenses can have like 10-20 of those lines (here's one I was recently looking into).
  • First True Exascale Supercomputer
    2 projects | news.ycombinator.com | 6 Jul 2022
    I have a bit of experience programming for a highly-parallel supercomputer, specifically in my case an IBM BlueGene/Q. In that case, the answer is a lot of message passing (we used Open MPI [0]). Since the nodes are discrete and don't have any shared memory, you end up with something kinda reminiscent of the actor model as popularized by Erlang and co -- but in C for number-crunching performance.

    That said, each of the nodes is itself composed of multiple cores with shared memory. So in cases where you really want to grind out performance, you actually end up using message passing to divvy up chunks of work, and then use classic pthreads to parallelize things further, with lower latency.

    Debugging is a bit of a nightmare, though, since some bugs inevitably only come up once you have a large number of nodes running the algorithm in parallel. But you'll probably be in a mainframe-style time-sharing setup, so you may have to wait hours or more to rerun things.

    This applies less to some of the newer supercomputers, which are more or less clusters of GPUs instead of clusters of CPUs. I imagine there's some commonality, but I haven't worked with any of them so I can't really say.

    [0] https://www.open-mpi.org/

  • Managing parallelism by process vs by machine
    1 project | /r/ExperiencedDevs | 30 May 2022
  • MPI + CUDA Program for thermal conductivity problem
    2 projects | /r/CUDA | 4 May 2022
    I would suggest using OpenMPI because it's pretty easy to get started with. You can build OpenMPI with CUDA support, then you can pass device pointers directly to MPI_Send and MPI_Recv. Then you don't have to deal with transfers and synchronization issues.
  • Distributed Training Made Easy with PyTorch-Ignite
    7 projects | dev.to | 10 Aug 2021
    backends from native torch distributed configuration: nccl, gloo, mpi.
  • FEA computer simulation question
    1 project | /r/buildapc | 23 Apr 2021
    I use a linux ubuntu machine with MPI (https://www.open-mpi.org/). I had a question on making my computer simulations faster. Would be better to get an older AMD 9590 machine clocked at 4.7 ghz or continue using my Ryzen 7 1700 machine clocked at something like 3.5ghz?
  • C Deep
    80 projects | dev.to | 27 Feb 2021
    OpenMPI - Message passing interface implementation. BSD-3-Clause

Klib

Posts with mentions or reviews of Klib. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-11-10.
  • Factor is faster than Zig
    11 projects | news.ycombinator.com | 10 Nov 2023
    In my example the table stores the hash codes themselves instead of the keys (because the hash function is invertible)

    Oh, I see, right. If determining the home bucket is trivial, then the back-shifting method is great. The issue is just that it’s not as much of a general-purpose solution as it may initially seem.

    “With a different algorithm (Robin Hood or bidirectional linear probing), the load factor can be kept well over 90% with good performance, as the benchmarks in the same repo demonstrate.”

    I’ve seen the 90% claim made several times in literature on Robin Hood hash tables. In my experience, the claim is a bit exaggerated, although I suppose it depends on what our idea of “good performance” is. See these benchmarks, which again go up to a maximum load factor of 0.95 (Although boost and Absl forcibly grow/rehash at 0.85-0.9):

    https://strong-starlight-4ea0ed.netlify.app/

    Tsl, Martinus, and CC are all Robin Hood tables (https://github.com/Tessil/robin-map, https://github.com/martinus/robin-hood-hashing, and https://github.com/JacksonAllan/CC, respectively). Absl and Boost are the well-known SIMD-based hash tables. Khash (https://github.com/attractivechaos/klib/blob/master/khash.h) is, I think, an ordinary open-addressing table using quadratic probing. Fastmap is a new, yet-to-be-published design that is fundamentally similar to bytell (https://www.youtube.com/watch?v=M2fKMP47slQ) but also incorporates some aspects of the aforementioned SIMD maps (it caches a 4-bit fragment of the hash code to avoid most key comparisons).

    As you can see, all the Robin Hood maps spike upwards dramatically as the load factor gets high, becoming as much as 5-6 times slower at 0.95 vs 0.5 in one of the benchmarks (uint64_t key, 256-bit struct value: Total time to erase 1000 existing elements with N elements in map). Only the SIMD maps (with Boost being the better performer) and Fastmap appear mostly immune to load factor in all benchmarks, although the SIMD maps do - I believe - use tombstones for deletion.

    I’ve only read briefly about bi-directional linear probing – never experimented with it.

  • A simple hash table in C
    7 projects | news.ycombinator.com | 13 Jun 2023
  • So what's the best data structures and algorithms library for C?
    8 projects | /r/C_Programming | 15 Mar 2023
    It could be that the cost of the function calls, either directly or via a pointer, is drowned out by the cost of the one or more cache misses inevitably invoked with every hash table lookup. But I don't want to say too much before I've finished my benchmarking project and published the results. So let me just caution against laser-focusing on whether the comparator and hash function are/can be inlined. For example stb_ds uses a hardcoded hash function that presumably gets inlined, but in my benchmarking (again, I'll publish it here in coming weeks) shows it to be generally a poor performer (in comparison to not just CC, the current version of which doesn't necessarily inline those functions, but also STC, khash, and the C++ Robin Hood hash tables I tested).
  • Generic dynamic array in 60 lines of C
    4 projects | news.ycombinator.com | 28 Feb 2023
    Not an entirely uncommon idea. I've written one.

    There's also a well-known one here, in klib: https://github.com/attractivechaos/klib/blob/master/kvec.h

  • C_dictionary: A simple dynamically typed and sized hashmap in C - feedback welcome
    10 projects | /r/C_Programming | 23 Jan 2023
  • Inside boost::unordered_flat_map
    11 projects | /r/cpp | 18 Nov 2022
  • The New Ghostscript PDF Interpreter
    4 projects | news.ycombinator.com | 31 Jul 2022
    Code reuse is achievable by (mis)using the preprocessor system. It is possible to build a somewhat usable API, even for intrusive data structures. (eg. the linux kernel and klib[1])

    I do agree that generics are required for modern programming, but for some, the cost of complexity of modern languages (compared to C) and the importance of compatibility seem to outweigh the benefits.

    [1]: http://attractivechaos.github.io/klib

  • C LIBRARY
    2 projects | /r/C_Programming | 10 Jul 2022
  • boost::unordered map is a new king of data structures
    10 projects | /r/cpp | 30 Jun 2022
    Unordered hash map shootout CMAP = https://github.com/tylov/STC KMAP = https://github.com/attractivechaos/klib PMAP = https://github.com/greg7mdp/parallel-hashmap FMAP = https://github.com/skarupke/flat_hash_map RMAP = https://github.com/martinus/robin-hood-hashing HMAP = https://github.com/Tessil/hopscotch-map TMAP = https://github.com/Tessil/robin-map UMAP = std::unordered_map Usage: shootout [n-million=40 key-bits=25] Random keys are in range [0, 2^25). Seed = 1656617916: T1: Insert/update random keys: KMAP: time: 1.949, size: 15064129, buckets: 33554432, sum: 165525449561381 CMAP: time: 1.649, size: 15064129, buckets: 22145833, sum: 165525449561381 PMAP: time: 2.434, size: 15064129, buckets: 33554431, sum: 165525449561381 FMAP: time: 2.112, size: 15064129, buckets: 33554432, sum: 165525449561381 RMAP: time: 1.708, size: 15064129, buckets: 33554431, sum: 165525449561381 HMAP: time: 2.054, size: 15064129, buckets: 33554432, sum: 165525449561381 TMAP: time: 1.645, size: 15064129, buckets: 33554432, sum: 165525449561381 UMAP: time: 6.313, size: 15064129, buckets: 31160981, sum: 165525449561381 T2: Insert sequential keys, then remove them in same order: KMAP: time: 1.173, size: 0, buckets: 33554432, erased 20000000 CMAP: time: 1.651, size: 0, buckets: 33218751, erased 20000000 PMAP: time: 3.840, size: 0, buckets: 33554431, erased 20000000 FMAP: time: 1.722, size: 0, buckets: 33554432, erased 20000000 RMAP: time: 2.359, size: 0, buckets: 33554431, erased 20000000 HMAP: time: 0.849, size: 0, buckets: 33554432, erased 20000000 TMAP: time: 0.660, size: 0, buckets: 33554432, erased 20000000 UMAP: time: 2.138, size: 0, buckets: 31160981, erased 20000000 T3: Remove random keys: KMAP: time: 1.973, size: 0, buckets: 33554432, erased 23367671 CMAP: time: 2.020, size: 0, buckets: 33218751, erased 23367671 PMAP: time: 2.940, size: 0, buckets: 33554431, erased 23367671 FMAP: time: 1.147, size: 0, buckets: 33554432, erased 23367671 RMAP: time: 1.941, size: 0, buckets: 33554431, erased 23367671 HMAP: time: 1.135, size: 0, buckets: 33554432, erased 23367671 TMAP: time: 1.064, size: 0, buckets: 33554432, erased 23367671 UMAP: time: 5.632, size: 0, buckets: 31160981, erased 23367671 T4: Iterate random keys: KMAP: time: 0.748, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 CMAP: time: 0.627, size: 23367671, buckets: 33218751, repeats: 8, sum: 4465059465719680 PMAP: time: 0.680, size: 23367671, buckets: 33554431, repeats: 8, sum: 4465059465719680 FMAP: time: 0.735, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 RMAP: time: 0.464, size: 23367671, buckets: 33554431, repeats: 8, sum: 4465059465719680 HMAP: time: 0.719, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 TMAP: time: 0.662, size: 23367671, buckets: 33554432, repeats: 8, sum: 4465059465719680 UMAP: time: 6.168, size: 23367671, buckets: 31160981, repeats: 8, sum: 4465059465719680 T5: Lookup random keys: KMAP: time: 0.943, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 CMAP: time: 0.863, size: 23367671, buckets: 33218751, lookups: 34235332, found: 29040438 PMAP: time: 1.635, size: 23367671, buckets: 33554431, lookups: 34235332, found: 29040438 FMAP: time: 0.969, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 RMAP: time: 1.705, size: 23367671, buckets: 33554431, lookups: 34235332, found: 29040438 HMAP: time: 0.712, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 TMAP: time: 0.584, size: 23367671, buckets: 33554432, lookups: 34235332, found: 29040438 UMAP: time: 1.974, size: 23367671, buckets: 31160981, lookups: 34235332, found: 29040438
  • C++ containers but in C
    8 projects | /r/C_Programming | 8 Mar 2022

What are some alternatives?

When comparing ompi and Klib you can also consider the following projects:

gloo - Collective communications library with various primitives for multi-machine training.

stb - stb single-file public domain libraries for C/C++

Redis - Redis is an in-memory database that persists on disk. The data model is key-value, but many different kind of values are supported: Strings, Lists, Sets, Sorted Sets, Hashes, Streams, HyperLogLogs, Bitmaps.

Better String - The Better String Library

NCCL - Optimized primitives for collective multi-GPU communication

Better Enums - C++ compile-time enum to string, iteration, in a single header file

FlatBuffers - FlatBuffers: Memory Efficient Serialization Library

ZXing - ZXing ("Zebra Crossing") barcode scanning library for Java, Android

libvips - A fast image processing library with low memory needs.

ZLib - A massively spiffy yet delicately unobtrusive compression library.

SWIFT - Modern astrophysics and cosmology particle-based code. Mirror of gitlab developments at https://gitlab.cosma.dur.ac.uk/swift/swiftsim

HTTP Parser - http request/response parser for c