hdbscan
100DaysofMLCode
hdbscan  100DaysofMLCode  

6  1  
2,686  303  
1.2%    
5.8  0.0  
18 days ago  9 months ago  
Jupyter Notebook  Jupyter Notebook  
BSD 3clause "New" or "Revised" License  MIT License 
Stars  the number of stars that a project has on GitHub. Growth  month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
hdbscan

Introducing the Semantic Graph
A number of excellent topic modeling libraries exist in Python today. BERTopic and Top2Vec are two of the most popular. Both use sentencetransformers to encode data into vectors, UMAP for dimensionality reduction and HDBSCAN to cluster nodes.
 Hierarchical clustering algorithm

Introduction to KMeans Clustering
Working in spatial data science, I rarely find applications where kmeans is the best tool. The problem is that it is difficult to know how many clusters you can expect on maps. Is it 5, 500, or 10,000? Here HDBSCAN [1] shines because it will cluster _and_ select the most suitable number of clusters, to cut the single linkage cluster tree.
[1]: https://github.com/scikitlearncontrib/hdbscan

New clustering algorithms like DBSCAN and OPTICS?
You might be interested in HDBSCAN which has several implementations, but the python implelementation is commonly used. That implementation makes use of algorithmic changes to significantly improve the computational complexity. Some more recent variations on that include the gammalinkage variant which is quite powerful.

DBSCAN ALternatives?
The OPTICS algorithm is in the latest versions of sklearn and is a reasonable alternative to DBSCAN  it has much the same theoretical foundation, but can cope with variable density clusters better. If you are willing to step outside sklearn itself there is also HDBSCAN which is a hierarchical clustering version of DBSCAN and is in sklearncontrib so should be compatible with an sklearn pipeline.

[D] Good algorithm for clustering big data (sentences represented as embeddings)?
Maybe use (H)DBScan which I think should work also for huge datasets. I don't think there is a ready to use clustering with unbuild cosine similarily metrics, and you also won't be able to precompute the 100k X 100k dense similarity matrix. The only way to go on this is to L2 normalize your embeddings, then the dot product will be the angular distance as a proxy to the cosine similarily. See also https://github.com/scikitlearncontrib/hdbscan/issues/69
100DaysofMLCode

#100DaysofMLCode Challenge
NishkarshRaj / 100DaysofMLCode
What are some alternatives?
faiss  A library for efficient similarity search and clustering of dense vectors.
100DaysOfMLCode  100 Days of ML Coding
Top2Vec  Top2Vec learns jointly embedded topic, document and word vectors.
rmi  A learned index structure
Milvus  A cloudnative vector database, storage for next generation AI applications
rtdl  Research on Tabular Deep Learning (Python package & papers) [Moved to: https://github.com/Yura52/rtdl]
RACplusplus  A high performance implementation of Reciprocal Agglomerative Clustering in C++
vqganclipgenerator  Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on easeofuse, documentation, and smooth video creation.
homemademachinelearning  ðŸ¤– Python examples of popular machine learning algorithms with interactive Jupyter demos and math being explained
notebooks  Implement, demonstrate, reproduce and extend the results of the Risk articles 'Differential Machine Learning' (2020) and 'PCA with a Difference' (2021) by Huge and Savine, and cover implementation details left out from the papers.
leidenalg  Implementation of the Leiden algorithm for various quality functions to be used with igraph in Python.
GatedTabTransformer  A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.