SciMLStyle VS Enzyme.jl

Compare SciMLStyle vs Enzyme.jl and see what are their differences.

InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
SciMLStyle Enzyme.jl
2 10
195 401
11.8% 2.7%
6.1 9.5
21 days ago 2 days ago
Julia Julia
MIT License MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

SciMLStyle

Posts with mentions or reviews of SciMLStyle. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-11-19.
  • Julia as a unifying end-to-end workflow language on the Frontier exascale system
    5 projects | news.ycombinator.com | 19 Nov 2023
  • “Why I still recommend Julia”
    11 projects | news.ycombinator.com | 25 Jun 2022
    No, you do get type errors during runtime. The most common one is a MethodNotFound error, which corresponds to a dispatch not being found. This is the one that people then complain about for long stacktraces and as being hard to read (and that's a valid criticism). The reason for it is because if you do xy with a type combination that does not have a corresponding dispatch, i.e. (x::T1,y::T2) not defined anywhere, then it looks through the method table of the function, does not find one, and throws this MethodNotFound error. You will only get no error if a method is found. Now what can happen is that you can have a method to an abstract type, *(x::T1,y::AbstractArray), but `y` does not "actually" act like an AbstractArray in some way. If the way that it's "not an AbstractArray" is that it's missing some method overloads of the AbstractArray interface (https://docs.julialang.org/en/v1/manual/interfaces/#man-inte...), you will get a MethodNotFound error thrown on that interface function. Thus you will only not get an error if someone has declared `typeof(y) <: AbstractArray` and implemented the AbstractArray interface.

    However, what Yuri pointed out is that there are some packages (specifically in the statistics area) which implemented functions like `f(A::AbstractArray)` but used `for i in 1:length(A)` to iterate through x's values. Notice that the AbstractArray interface has interface functions for "non-traditional indices", including `axes(A)` which is a function to call to get "the a tuple of AbstractUnitRange{<:Integer} of valid indices". Thus these codes are incorrect, because by the definition of the interface you should be doing `for i in axes(A)` if you want to support an AbstractArray because there is no guarantee that its indices go from `1:length(A)`. Note that this was added to the `AbstractArray` interface in the v1.0 change, which is notably after the codes he referenced were written, and thus it's more that they were not updated to handle this expanded interface when the v1.0 transition occurred.

    This is important to understand because the criticisms and proposed "solutions" don't actually match the case... at all. This is not a case of Julia just letting anything through: someone had to purposefully define these functions for them to exist. And interfaces are not a solution here because there is an interface here, its rules were just not followed. I don't know of an interface system which would actually throw an error if someone does a loop `for i in 1:length(A)` in a code where `A` is then indexed by the element. That analysis is rather difficult at the compiler level because it's non-local: `length(A)` is valid since querying for the length is part of the AbstractArray interface (for good reasons), so then `1:length(A)` is valid since that's just range construction on integers, so the for loop construction itself is valid, and it's only invalid because of some other knowledge about how `A[i]` should work (this look structure could be correct if it's not used to `A[i]` but rather do something like `sum(i)` without indexing). If you want this to throw an error, the only real thing you could do is remove indexing from the AbstractArray interface and solely rely on iteration, which I'm not opposed to (given the relationship to GPUs of course), but etc. you can see the question to solving this is "what is the right interface?" not "are there even interfaces?" (of which the answer is, yes but the errors are thrown at runtime MethodNotFound instead of compile time MethodNotImplemented for undefined things, the latter would be cool for better debugging and stacktraces but isn't a solution).

    This is why the real discussions are not about interfaces as a solution, they don't solve this issue, and even further languages with interfaces also have this issue. It's about tools for helping code style. You probably should just never do `for i in 1:length(A)`, probably you should always do `for i in eachindex(A)` or `for i in axes(A)` because those iteration styles work for `Array` but also work for any `AbstractArray` and thus it's just a safer way to code. That is why there are specific mentions to not do this in style guides (for example, https://github.com/SciML/SciMLStyle#generic-code-is-preferre...), and things like JuliaFormatter automatically flag it as a style break (which would cause CI failures in organizations like SciML which enforce SciML Style formatting as a CI run with Github Actions https://github.com/SciML/ModelingToolkit.jl/blob/v8.14.1/.gi...). There's a call to add linting support for this as well, flagging it any time someone writes this code. If everyone is told to not assume 1-based indexing, formatting CI fails if it is assumed, and the linter underlines every piece of code that does it as red, (along with many other measures, which includes extensive downstream testing, fuzzing against other array types, etc.) then we're at least pretty well guarded against it. And many Julia organizations, like SciML, have these practices in place to guard against it. Yuri's specific discussion is more that JuliaStats does not.

Enzyme.jl

Posts with mentions or reviews of Enzyme.jl. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2022-06-25.
  • Custom gradients in Enzyme
    1 project | /r/Julia | 27 Nov 2022
    It's possible but at this time it's not recommended or documented as right now it requires writing some LLVM-level stuff and a better system is coming soon (see https://github.com/EnzymeAD/Enzyme.jl/pull/177)
  • “Why I still recommend Julia”
    11 projects | news.ycombinator.com | 25 Jun 2022
    Can you point to a concrete example of one that someone would run into when using the differential equation solvers with the default and recommended Enzyme AD for vector-Jacobian products? I'd be happy to look into it, but there do not currently seem to be any correctness issues in the Enzyme issue tracker that are current (3 issues are open but they all seem to be fixed, other than https://github.com/EnzymeAD/Enzyme.jl/issues/278 which is actually an activity analysis bug in LLVM). So please be more specific. The issue with Enzyme right now seems to moreso be about finding functional forms that compile, and it throws compile-time errors in the event that it cannot fully analyze the program and if it has too much dynamic behavior (example: https://github.com/EnzymeAD/Enzyme.jl/issues/368).

    Additional note, we recently did a overhaul of SciMLSensitivity (https://sensitivity.sciml.ai/dev/) and setup a system which amounts to 15 hours of direct unit tests doing a combinatoric check of arguments with 4 hours of downstream testing (https://github.com/SciML/SciMLSensitivity.jl/actions/runs/25...). What that identified is that any remaining issues that can arise are due to the implicit parameters mechanism in Zygote (Zygote.params). To counteract this upstream issue, we (a) try to default to never default to Zygote VJPs whenever we can avoid it (hence defaulting to Enzyme and ReverseDiff first as previously mentioned), and (b) put in a mechanism for early error throwing if Zygote hits any not implemented derivative case with an explicit error message (https://github.com/SciML/SciMLSensitivity.jl/blob/v7.0.1/src...). We have alerted the devs of the machine learning libraries, and from this there has been a lot of movement. In particular, a globals-free machine learning library, Lux.jl, was created with fully explicit parameters https://lux.csail.mit.edu/dev/, and thus by design it cannot have this issue. In addition, the Flux.jl library itself is looking to do a redesign that eliminates implicit parameters (https://github.com/FluxML/Flux.jl/issues/1986). Which design will be the one in the end, that's uncertain right now, but it's clear that no matter what the future designs of the deep learning libraries will fully cut out that part of Zygote.jl. And additionally, the other AD libraries (Enzyme and Diffractor for example) do not have this "feature", so it's an issue that can only arise from a specific (not recommended) way of using Zygote (which now throws explicit error messages early and often if used anywhere near SciML because I don't tolerate it).

    So from this, SciML should be rather safe and if not, please share some details and I'd be happy to dig in.

  • The Julia language has a number of correctness flaws
    19 projects | news.ycombinator.com | 16 May 2022
    Lots of things are being rewritten. Remember we just released a new neural network library the other day, SimpleChains.jl, and showed that it gave about a 10x speed improvement on modern CPUs with multithreading enabled vs Jax Equinox (and 22x when AVX-512 is enabled) for smaller neural network and matrix-vector types of cases (https://julialang.org/blog/2022/04/simple-chains/). Then there's Lux.jl fixing some major issues of Flux.jl (https://github.com/avik-pal/Lux.jl). Pretty much everything is switching to Enzyme which improves performance quite a bit over Zygote and allows for full mutation support (https://github.com/EnzymeAD/Enzyme.jl). So an entire machine learning stack is already seeing parts release.

    Right now we're in a bit of an uncomfortable spot where we have to use Zygote for a few things and then Enzyme for everything else, but the custom rules system is rather close and that's the piece that's needed to make the full transition.

  • Engineering Trade-Offs in Automatic Differentiation: from TensorFlow and PyTorch to Jax and Julia
    1 project | /r/Julia | 26 Dec 2021
    enzyme.jl is probably the quickest way to play with enzyme: https://github.com/wsmoses/Enzyme.jl
  • Useful Algorithms That Are Not Optimized by Jax, PyTorch, or TensorFlow
    2 projects | news.ycombinator.com | 22 Jul 2021
    "Maybe they let you declare some subgraph as 'dynamic' to avoid static optimizations?" What you just described is Tensorflow Eager and why it has some performance issues. XLA makes some pretty strong assumptions and I don't that should change. Tensorflow's ability to automatically generate good parallelized production code stems from the restrictions it has imposed. So I wouldn't even try for a "one true AD to rule them all" since making things more flexible will reduce the amount of compiler optimizations that can be automatically performed.

    To get the more flexible form, you really would want to do it in a way that uses a full programming language's IR as its target. I think trying to use a fully dynamic programming language IR directly (Python, R, etc.) directly would be pretty insane because it would be hard to enforce rules and get performance. So some language that has a front end over an optimizing compiler (LLVM) would probably make the most sense. Zygote and Diffractor uses Julia's IR, but there are other ways to do this as well. Enzyme (https://github.com/wsmoses/Enzyme.jl) uses the LLVM IR directly for doing source-to-source translations. Using some dialect of LLVM (provided by MLIR) might be an interesting place to write a more ML-focused flexible AD system. Swift for Tensorflow used the Swift IR. This mindset starts to show why those tools were chosen.

  • Julia Computing Raises $24M Series A
    5 projects | news.ycombinator.com | 19 Jul 2021
    Have you explored the SciML landscape at all (?):

    https://sciml.ai/

    There are a number of components here which enable (what I would call) the expression of more advanced models using Julia's nice compositional properties.

    Flux.jl is of course what most people would think of here (one of Julia's deep learning frameworks). But the reality behind Flux.jl is that it is just Julia code -- nothing too fancy.

    There's ongoing work for AD in several directions -- including a Julia interface to Enzyme: https://github.com/wsmoses/Enzyme.jl

    Also, a new AD system which Keno (who you'll see comment below or above) has been working on -- see Diffractor.jl on the JuliaCon schedule (for example).

    Long story short -- there's quite a lot of work going on.

    It may not seem like there is a "unified" package -- but that's because packages compose so well together in Julia, there's really no need for that.

  • Swift for TensorFlow Shuts Down
    13 projects | news.ycombinator.com | 12 Feb 2021
    The name of the LLVM AD tool is actually Enzyme [http://enzyme.mit.edu/] (Zygote is a Julia tool)
  • Enzyme – High-performance automatic differentiation of LLVM (r/MachineLearning)
    1 project | /r/datascienceproject | 8 Feb 2021
    1 project | /r/datascienceproject | 7 Feb 2021
  • Enzyme – High-performance automatic differentiation of LLVM
    3 projects | news.ycombinator.com | 4 Feb 2021
    Also see the Julia package that makes it acessible with a high level interface and probably one of the easier ways to play with it: https://github.com/wsmoses/Enzyme.jl.

What are some alternatives?

When comparing SciMLStyle and Enzyme.jl you can also consider the following projects:

SciMLSensitivity.jl - A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, adjoint methods, and more for ODEs, SDEs, DDEs, DAEs, etc.

ChainRules.jl - forward and reverse mode automatic differentiation primitives for Julia Base + StdLibs

RecursiveArrayTools.jl - Tools for easily handling objects like arrays of arrays and deeper nestings in scientific machine learning (SciML) and other applications

ForwardDiff.jl - Forward Mode Automatic Differentiation for Julia

Lux.jl - Explicitly Parameterized Neural Networks in Julia

MLJ.jl - A Julia machine learning framework

Flux.jl - Relax! Flux is the ML library that doesn't make you tensor

swift - Swift for TensorFlow

SciPy - SciPy library main repository

dex-lang - Research language for array processing in the Haskell/ML family

NBodySimulator.jl - A differentiable simulator for scientific machine learning (SciML) with N-body problems, including astrophysical and molecular dynamics