Basic-Statistics-With-Python
hyperlearn
Basic-Statistics-With-Python | hyperlearn | |
---|---|---|
1 | 5 | |
119 | 2,262 | |
0.0% | 2.3% | |
4.3 | 3.4 | |
about 1 year ago | 10 months ago | |
Jupyter Notebook | Jupyter Notebook | |
MIT License | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Basic-Statistics-With-Python
-
Python for Econometrics for Practitioners [Free Online Courses]
Basic Statistics with Python: These notes aim to refresh the essential concepts of frequentist statistics, such as descriptive statistics, parameter estimations, hypothesis testing, ANOVA and etc. All codes are straightforward to understand. We were spending roughly three hours in total to cover all sections.
hyperlearn
-
10 Open Source AI Tools Every Developer Should Know
Unsloth AI is designed to optimize large language model fine-tuning on modest hardware. It leverages efficient training algorithms to allow even GPUs with 24GB VRAM, like consumer-grade cards, to fine-tune models such as Llama 3 without massive resource demands or overheating risks.
-
80% faster, 50% less memory, 0% accuracy loss Llama finetuning
I agree fully - what do you suggest then? OSS the entire code base and using AGPL3? I tried that with https://github.com/danielhanchen/hyperlearn to no avail - we couldn't even monetize it at all, so I just OSSed everything.
I listed all the research articles and methods in Hyperlearn which in the end were gobbled up by other packages.
We still have to cover life expenses and stuff sadly as a startup.
Do you have any suggestions how we could go about this? We thought maybe an actual training / inference platform, and not even OSSing any code, but we decided against this, so we OSSed some code.
Ay suggestions are welcome!
-
80% faster, 50% less memory, 0% loss of accuracy Llama finetuning
Good point - the main issue is we encountered this exact issue with our old package Hyperlearn (https://github.com/danielhanchen/hyperlearn).
I OSSed all the code to the community - I'm actually an extremely open person and I love contributing to the OSS community.
The issue was the package got gobbled up by other startups and big tech companies with no credit - I didn't want any cash from it, but it stung and hurt really bad hearing other startups and companies claim it was them who made it faster, whilst it was actually my work. It hurt really bad - as an OSS person, I don't want money, but just some recognition for the work.
I also used to accept and help everyone with their writing their startup's software, but I never got paid or even any thanks - sadly I didn't expect the world to be such a hostile place.
So after a sad awakening, I decided with my brother instead of OSSing everything, we would first OSS something which is still very good - 5X faster training is already very reasonable.
I'm all open to other suggestions on how we should approach this though! There are no evil intentions - in fact I insisted we OSS EVERYTHING even the 30x faster algos, but after a level headed discussion with my brother - we still have to pay life expenses no?
If you have other ways we can go about this - I'm all ears!! We're literally making stuff up as we go along!
-
[Project] BFLOAT16 on ALL hardware (>= 2009), up to 2000x faster ML algos, 50% less RAM usage for all old/new hardware - Hyperlearn Reborn.
Hello everyone!! It's been a while!! Years back I released Hyperlearn https://github.com/danielhanchen/hyperlearn. It has 1.2K Github stars, where I made tonnes of algos faster:
What are some alternatives?
Linear-Algebra-With-Python - Lecture Notes for Linear Algebra Featuring Python. This series of lecture notes will walk you through all the must-know concepts that set the foundation of data science or advanced quantitative skillsets. Suitable for statistician/econometrician, quantitative analysts, data scientists and etc. to quickly refresh the linear algebra with the assistance of Python computation and visualization.
Econometrics-With-Python - Tutorials of econometrics featuring Python programming. This is a crash course for reviewing the most important concepts and techniques of basic econometrics, the theories are presented lightly without hustles of derivation and Python codes are straightforward.
notebooks - Implement, demonstrate, reproduce and extend the results of the Risk articles 'Differential Machine Learning' (2020) and 'PCA with a Difference' (2021) by Huge and Savine, and cover implementation details left out from the papers.
Bayesian-Statistics-Econometrics - Bayesian Statistics-Econometrics
MegEngine - MegEngine 是一个快速、可拓展、易于使用且支持自动求导的深度学习框架