-
To give a contrasting perspective, I think the Java ecosystem is much better suited for many data science tasks, and has a growing and well-maintained set of libraries for general purpose machine learning. I won't list them all, but TF-Java, DJL et al. have implementations of many modern architectures and there are a number of excellent libraries (CoreNLP, Lucene et al.) for working with text.
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
CoreNLP
CoreNLP: A Java suite of core NLP tools for tokenization, sentence segmentation, NER, parsing, coreference, sentiment analysis, etc.
To give a contrasting perspective, I think the Java ecosystem is much better suited for many data science tasks, and has a growing and well-maintained set of libraries for general purpose machine learning. I won't list them all, but TF-Java, DJL et al. have implementations of many modern architectures and there are a number of excellent libraries (CoreNLP, Lucene et al.) for working with text.
-
To give a contrasting perspective, I think the Java ecosystem is much better suited for many data science tasks, and has a growing and well-maintained set of libraries for general purpose machine learning. I won't list them all, but TF-Java, DJL et al. have implementations of many modern architectures and there are a number of excellent libraries (CoreNLP, Lucene et al.) for working with text.
-
To give a contrasting perspective, I think the Java ecosystem is much better suited for many data science tasks, and has a growing and well-maintained set of libraries for general purpose machine learning. I won't list them all, but TF-Java, DJL et al. have implementations of many modern architectures and there are a number of excellent libraries (CoreNLP, Lucene et al.) for working with text.