pasv VS mathlib

Compare pasv vs mathlib and see what are their differences.

pasv

The Pascal-F Verifier (by John-Nagle)

mathlib

Lean 3's obsolete mathematical components library: please use mathlib4 (by leanprover-community)
InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
pasv mathlib
5 36
44 1,647
- 1.5%
10.0 8.8
almost 7 years ago 24 days ago
Common Lisp Lean
- Apache License 2.0
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

pasv

Posts with mentions or reviews of pasv. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-05-04.
  • Verified Rust for low-level systems code
    6 projects | news.ycombinator.com | 4 May 2024
    Then you go to the more elaborate prover. We used the Boyer-Moore prover for that. After proving a implies b, that became a theorem/rule the fast prover could use when it matched. So if the same situation came up again in code, the rule would be re-used automatically.

    I notice that the examples for this verified Rust system don't seem to include a termination check for loops. You prove that loops terminate by demonstrating that some nonnegative integer expression decreases on each iteration and never goes negative. If you can't prove that easily, the code has no place in mission-critical code.

    Microsoft's F* is probably the biggest success in this area.[3]

    [1] https://archive.org/details/manualzilla-id-5928072/page/n3/m...

    [2] https://github.com/John-Nagle/pasv

    [3] https://www.microsoft.com/en-us/research/video/programming-w...

  • Why Is Common Lisp Not the Most Popular Programming Language?
    8 projects | news.ycombinator.com | 14 Feb 2024
    This is a generic problem with macro systems, of course, which is why C deliberately had a weak macro system.

    LISP is a blast from the path. It's fun for retro reasons, but things have moved on.

    [1] https://github.com/John-Nagle/nqthm

    [2] https://github.com/John-Nagle/pasv/tree/master/src/CPC4

  • Will Computers Redefine the Roots of Math?
    6 projects | news.ycombinator.com | 30 Jun 2023
    > In the 70's, this wasn't considered a 'real' proof.

    I ran into that decades ago. We used the original Boyer-Moore theorem prover [1] as part of a program verification system. The system had two provers, the Nelson-Oppen simplifier (the first SAT solver) to automatically handle the easy proofs, and the Boyer-Moore system for the hard ones. To make sure that both had consistent theories, I used the Boyer-Moore prover to prove the "axioms" of the Nelson-Oppen system, especially what are usually called McCarthy's axioms (the ones that use Select and Store) for arrays.

    The Boyer-Moore system uses a strictly constructive approach to mathematics. It starts from something like Peano arithmetic (there is a number zero, and an operation add 1) and builds up number theory. So I added a concept of arrays, represented as (index, value) tuples in sorted order, and was able to prove the usual "axioms" for arrays as theorems.

    The machine proofs were long and involved much case analysis.[2] I submitted a paper to JACM in the early 1980s and got back reviews saying that it was just too long and inelegant to be at the fundamentals of computer science. That might not be the case today.

    A few years back, I put the Boyer-Moore prover on Github, after getting it to work with Gnu Common LISP. So you can still run all this 1980s stuff. It's much faster today. It took about 45 minutes to grind through these proofs on a VAX 11/780 in the early 1980s. Now it takes about a second.

    The proof log [2] is amusing. It's building up number theory from a very low level, starting by proving that X + 0 = X. Each theorem proved can be used as a lemma by later theorems, so you guide the process by giving it problems to solve in the right order. By line 1900, it's proving that multiplication distributes over addition. Array theory, the new stuff, starts around line 2994.

    The reason this is so complicated and ugly is that there's no use of axiomatic set theory. Arrays are easy if you have sets. But there are no sets here. Sets don't fit well into this strict constructive theory, because EQUAL means identical. You can't create weaker definitions of equality which say that two sets are equal if they contain the same elements regardless of order, because that introduces a risk of unsoundness. Effort must be put into keeping the tuples of the array representation in ascending order by subscript, which implies much case analysis. Mathematicians hate case analysis. Computers are good at it.

    [1] https://github.com/John-Nagle/nqthm

    [2] https://github.com/John-Nagle/pasv/blob/master/src/work/temp...

  • What I've Learned About Formal Methods in Half a Year
    3 projects | news.ycombinator.com | 10 Apr 2023
    behave as if it does. The other extreme would be a GUI program.

    [1] http://www.animats.com/papers/verifier/verifiermanual.pdf

    [2] https://github.com/John-Nagle/pasv

  • Grothendieck's Approach to Equality [pdf]
    2 projects | news.ycombinator.com | 30 May 2022
    which proves that the storing operation always produces a validly ordered array. That's essentially a code proof of correctness for a recursive function The Boyer-Moore prover was able to grind out a proof of that without help. That was a long proof, too.

    I submitted this to JACM. It was rejected, mostly for uglyness. The concept that you needed all this heavy machine-driven case analysis to prove a nice simple "axiom" upset mathematicians. Today it would be less of an issue. People are now more used to proofs that take a lot of grinding through cases.

    You could build up set theory this way, via ordered lists, if you wanted.

    So that's a classic of what happens if you take "equal" seriously.

    [1] http://www-formal.stanford.edu/jmc/towards.pdf

    [2] https://theory.stanford.edu/~arbrad/papers/arrays.pdf

    [3] https://github.com/John-Nagle/pasv/blob/master/src/work/temp...

    [4] https://github.com/John-Nagle/nqthm

mathlib

Posts with mentions or reviews of mathlib. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-09-07.
  • An Easy-Sounding Problem Yields Numbers Too Big for Our Universe
    1 project | news.ycombinator.com | 4 Dec 2023
  • Towards a new SymPy: part 2 – Polynomials
    1 project | news.ycombinator.com | 8 Sep 2023
    It's been on my mind lately as well. I was trying out `symbolics.jl` (a CAS written in Julia), and it turned out that it didn't support symbolic integration beyond simple linear functions or polynomials (at least back then, things have changed now it seems). Implementing a generic algorithm for finding integrals is hard, but I was expecting more from that CAS since this seems to be implemented in most other CASs. The thing is that every single CAS that covers general maths knowledge will have to implement the same algorithm, while it's hard to do it even once!

    I feel like at least a large part of the functionality of a general purpose CAS can be written down once, and every CAS out there could benefit from it, similar to what the Language Server Protocol did for programming tools. They also had to rewrite the same tool for some language multiple times because there are lots of editors out there, and the LSP cut the time investment down a lot. They did have to invest a large amount of time to get LSP up and running, and it'll have to be maintained, but I think it's orders of magnitudes more efficient than having every tool developed and maintained for every single (programming language, editor) pair out there.

    Main problem is like you said how to write down mathematical knowledge in a way that all CASs can understand it. I've been learning about Mathlib lately [0], which seems like a great starting point for this. It is as far as I know one of the first machine readable libraries of mathematical knowledge; it has a large community which has been pushing it continuously forward for years into research-level mathematics and covering the entire undergraduate maths curriculum and it's still accelerating. If some kind of protocol can be designed to read from libraries like this and turn it into CAS code, that would be a major step towards making the CAS ecosystem more sustainable I think.

    It's not exactly what you were talking about, as in, this would allow multiple CASs to co-exist and benefit from each other, but I think that's better than having one massive CAS that has a monopoly. No software is perfect, but having a diverse set of choices that are open source would be more than enough to satisfy everyone.

    (I have posted about this before on the Lean Zulip forum, it's open to everyone to read without an account [1])

    [0] https://leanprover-community.github.io/

  • Lean 4.0.0, first official lean4 release
    10 projects | news.ycombinator.com | 7 Sep 2023
    Kinda agree but Mathlib and its documentation makes for a big corpus to learn by example from. Not ideal but it helps.

    https://github.com/leanprover-community/mathlib

  • It's not mathematics that you need to contribute to (2010)
    1 project | news.ycombinator.com | 18 Jul 2023
    https://github.com/leanprover-community/mathlib

    https://1lab.dev/

    You can watch the next generation, or participate, right now.

  • If given a list of properties/definitions and relationship between them, could a machine come up with (mostly senseless, but) true implications?
    5 projects | /r/math | 11 Jul 2023
    Still, there are many useful tools based on these ideas, used by programmers and mathematicians alike. What you describe sounds rather like Datalog (e.g. Soufflé Datalog), where you supply some rules and an initial fact, and the system repeatedly expands out the set of facts until nothing new can be derived. (This has to be finite, if you want to get anywhere.) In Prolog (e.g. SWI Prolog) you also supply a set of rules and facts, but instead of a fact as your starting point, you give a query containing some unknown variables, and the system tries to find an assignment of the variables that proves the query. And finally there is a rich array of theorem provers and proof assistants such as Agda, Coq, Lean, and Twelf, which can all be used to help check your reasoning or explore new ideas.
  • Will Computers Redefine the Roots of Math?
    6 projects | news.ycombinator.com | 30 Jun 2023
    For the math that you mention, I would suggest looking at mathlib (https://github.com/leanprover-community/mathlib). I agree that the foundations of Coq are somewhat distanced from the foundations most mathematicians are trained in. Lean/mathlib might be a bit more familiar, not sure. That said, I don't see any obstacles to developing classical real analysis or linear algebra in Coq, once you've gotten used to writing proofs in it.
  • Did studying proof based math topics e.g. analysis make you a better programmer?
    1 project | news.ycombinator.com | 24 Jun 2023
  • Which proof assistant is the best to formalize real analysis/probability/statistics?
    3 projects | /r/Coq | 18 Jun 2023
    At this point I would go with Lean because of mathlib. Mathlib's goal is to formalize modern mathematics, so many of the theorems you would need for analysis should already be there for you.
  • [R] Large Language Models trained on code reason better, even on benchmarks that have nothing to do with code
    1 project | /r/MachineLearning | 14 May 2023
    I think about that every day. Lean's mathlib is a gigantic (with respect to this kind of project) code base and each function, each definition has a precise and rigorous natural language counterpart (in a maths book, somewhere).
  • Is there a paid service where someone can explain a paper to me like I am 15?
    2 projects | /r/PhD | 1 Apr 2023
    It's been around since 2013, although there are LLM that interact with Lean to do automated theorem proving. Anyway, you can learn more about Lean here. I enjoyed their natural numbers game (which reminds, me I should finish the last two levels)

What are some alternatives?

When comparing pasv and mathlib you can also consider the following projects:

UniMath - This coq library aims to formalize a substantial body of mathematics using the univalent point of view.

coq - Coq is a formal proof management system. It provides a formal language to write mathematical definitions, executable algorithms and theorems together with an environment for semi-interactive development of machine-checked proofs.

Coq-HoTT - A Coq library for Homotopy Type Theory

Coq-Equations - A function definition package for Coq

cubical - An experimental library for Cubical Agda

mathquill - Easily type math in your webapp

verus-analyzer - A Verus compiler front-end for IDEs (derived from rust-analyzer)

fricas - Official repository of the FriCAS computer algebra system

polynomial-algebra - polynomial-algebra Haskell library

lean-liquid - 💧 Liquid Tensor Experiment

natural_number_game - Building the natural numbers in Lean 3. The original natural number game, now frozen. See README for Lean 4 information.

hott3 - HoTT in Lean 3