Rum Alternatives
Similar projects and alternatives to rum
-
-
-
Scout APM
Less time debugging, more time building. Scout APM allows you to find and fix performance issues with no hassle. Now with error monitoring and external services monitoring, Scout is a developer's best friend when it comes to application development.
-
pg_search
pg_search builds ActiveRecord named scopes that take advantage of PostgreSQL’s full text search
-
react-virtualized
React components for efficiently rendering large lists and tabular data
-
-
tatoeba2
Official repository for main codebase for Tatoeba, a multilingual sentence/translation database.
-
-
SonarLint
Deliver Cleaner and Safer Code - Right in Your IDE of Choice!. SonarLint is a free and open source IDE extension that identifies and catches bugs and vulnerabilities as you code, directly in the IDE. Install from your favorite IDE marketplace today.
-
-
-
pg_cjk_parser
Postgres CJK Parser pg_cjk_parser is a fts (full text search) parser derived from the default parser in PostgreSQL 11. When a postgres database uses utf-8 encoding, this parser supports all the features of the default parser while splitting CJK (Chinese, Japanese, Korean) characters into 2-gram tokens. If the database's encoding is not utf-8, the parser behaves just like the default parser.
-
rum reviews and mentions
- Postgrespro/rum: RUM access method – inverted index with additional information
-
Postgres Full-Text Search: A Search Engine in a Database
My experience has been that sorting by relevance ranking is quite expensive. I looked into this a bit and found https://github.com/postgrespro/rum (and some earlier slide decks about it) that explains why the GIN index type can't support searching and ranking itself (meaning you need to do heap scans for ranking). This is especially problematic if your users routinely do searches that match a lot of documents and you only want to show the top X results.
You might be just fine adding an unindexed tsvector column, since you've already filtered down the results.
The GIN indexes for FTS don't really work in conjunction with other indices, which is why https://github.com/postgrespro/rum exists. Luckily, it sounds like you can use your existing indices to filter and let postgres scan for matches on the tsvector.
-
Debugging random slow writes in PostgreSQL
We have been bitten by the same behavior. I gave a talk with a friend about this exact topic (diagnosing GIN pending list updates) at PGCon 2019 in Ottawa[1][2].
What you need to know is that the pending list will be merged with the main b-tree during several operations. Only one of them is so extremely critical for your insert performance - that is during actual insert. Both vacuum and autovacuum (including autovacuum analyze but not direct analyze) will merge the pending list. So frequent autovacuums are the first thing you should tune. Merging on insert happens when you exceed the gin_pending_list_limit. In all cases it is also interesting to know which memory parameter is used to rebuild the index as that inpacts how long it will take: work_mem (when triggered on insert), autovacuum_work_mem (when triggered during autovauum) and maintainance_work_mem (triggered by a call to gin_clean_pending_list()) define how much memory can be used for the rebuild.
What you can do is:
- tune the size of the pending list (like you did)
- make sure vacuum runs frequently
- if you have a bulk insert heavy workload (ie. nightly imports), drop the index and create it after inserting rows (not always makes sense business wise, depends on your app)
- disable fastupdate, you pay a higher cost per insert but remove the fluctuctuation when the merge needs to happen
The first thing was done in the article. However I believe the author still relies on the list being merged on insert. If vacuums were tuned agressively along with the limit (vacuums can be tuned per table). Then the list would be merged out of bound of ongoing inserts.
I also had the pleasure of speaking with one main authors of GIN indexes (Oleg Bartunov) during the mentioned PGCon. He gave probably the best solution and informed me to "just use RUM indexes". RUM[3] indexes are like GIN indexes, without the pending list and with faster ranking, faster phrase searches and faster timestamp based ordering. It is however out of the main postgresql release so it might be hard to get it running if you don't control the extensions that are loaded to your Postgres instance.
[1] - wideo https://www.youtube.com/watch?v=Brt41xnMZqo&t=1s
[2] - slides https://www.pgcon.org/2019/schedule/attachments/541_Let's%20...
-
Show HN: Full text search Project Gutenberg (60m paragraphs)
I suggest to have a look at https://github.com/postgrespro/rum if you haven’t yet. It solves the issue of slow ranking in PostgreSQL FTS.
Stats
postgrespro/rum is an open source project licensed under GNU General Public License v3.0 or later which is an OSI approved license.
Popular Comparisons
Are you hiring? Post a new remote job listing for free.