SaaSHub helps you find the best software and product alternatives Learn more →
Pysimdjson Alternatives
Similar projects and alternatives to pysimdjson
-
-
InfluxDB
InfluxDB – Built for High-Performance Time Series Workloads. InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now.
-
-
-
simdjson
Parsing gigabytes of JSON per second : used by Facebook/Meta Velox, the Node.js runtime, ClickHouse, WatermelonDB, Apache Doris, Milvus, StarRocks
-
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
-
msgspec
A fast serialization and validation library, with builtin support for JSON, MessagePack, YAML, and TOML
-
-
-
-
-
-
-
-
-
-
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
pysimdjson discussion
pysimdjson reviews and mentions
- Analyzing multi-gigabyte JSON files locally
-
I Use C When I Believe in Memory Safety
Its magic function wrapping comes at a cost, trading ease of use for runtime performance. When you have a single C++ function to call that will run for a "long" time, pybind all the way. But pysimdjson tends to call a single function very quickly, and the overhead of a single function call is orders of magnitude slower than with cython when being explit with types and signatures. Wrap a class in pybind11 and cython and compare the stack trace between the two, and the difference is startling.
Ex: https://github.com/TkTech/pysimdjson/issues/73
-
Processing JSON 2.5x faster than simdjson with msgspec
simdjson
-
[package-find] lsp-bridge
You are aware of simdjson being available in python if you really need some json crunching, albeit json module in Python is implemented in C itself, so I don't think understand why do you think Python is slow there?
-
The fastest tool for querying large JSON files is written in Python (benchmark)
json: 113.79130696877837 ms
While `orjson`, is faster than `ujson`/`json` here, it's only ~6% faster (in this benchmark). `simdjson` and `msgspec` (my library, see https://jcristharif.com/msgspec/) are much faster due to them avoiding creating PyObjects for fields that are never used.
If spyql's query engine can determine the fields it will access statically before processing, you might find using `msgspec` for JSON gives a nice speedup (it'll also type check the JSON if you know the type of each field). If this information isn't known though, you may find using `pysimdjson` (https://pysimdjson.tkte.ch/) gives an easy speed boost, as it should be more of a drop-in for `orjson`.
-
How I cut GTA Online loading times by 70%
I don't think JSON is really the problem - parsing 10MB of JSON is not so slow. For example, using Python's json.load takes about 800ms for a 47MB file on my system, using something like simdjson cuts that down to ~70ms.
-
A note from our sponsor - SaaSHub
www.saashub.com | 16 May 2025
Stats
TkTech/pysimdjson is an open source project licensed under GNU General Public License v3.0 or later which is an OSI approved license.
The primary programming language of pysimdjson is Python.