Ingest, store, & analyze all types of time series data in a fully-managed, purpose-built database. Keep data forever with low-cost storage and superior data compression. Learn more →
Prosto Alternatives
Similar projects and alternatives to prosto
-
-
InfluxDB
Access the most powerful time series database as a service. Ingest, store, & analyze all types of time series data in a fully-managed, purpose-built database. Keep data forever with low-cost storage and superior data compression.
-
spyql
Query data on the command line with SQL-like SELECTs powered by Python expressions
-
-
cape-dataframes
Privacy transformations on Spark and Pandas dataframes backed by a simple policy language.
-
prql
PRQL is a modern language for transforming data — a simple, powerful, pipelined SQL replacement
-
-
Sonar
Write Clean Python Code. Always.. Sonar helps you commit clean code every time. With over 225 unique rules to find Python bugs, code smells & vulnerabilities, Sonar finds the issues while you focus on the work.
-
-
hamilton
A scalable general purpose micro-framework for defining dataflows. THIS REPOSITORY HAS BEEN MOVED TO www.github.com/dagworks-inc/hamilton
-
go-featureprocessing
🔥 Fast, simple sklearn-like feature processing for Go
-
Optimus
:truck: Agile Data Preparation Workflows made easy with Pandas, Dask, cuDF, Dask-cuDF, Vaex and PySpark (by ironmussa)
-
SheetJS js-xlsx
📗 SheetJS Spreadsheet Data Toolkit -- New home https://git.sheetjs.com/SheetJS/sheetjs
-
PostgreSQL
Mirror of the official PostgreSQL GIT repository. Note that this is just a *mirror* - we don't work with pull requests on github. To contribute, please see https://wiki.postgresql.org/wiki/Submitting_a_Patch
-
-
-
logica
Logica is a logic programming language that compiles to StandardSQL and runs on Google BigQuery.
-
-
github-orgmode-tests
This is a test project where you can explore how github interprets Org-mode files
-
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
prosto reviews and mentions
-
Show HN: PRQL 0.2 – Releasing a better SQL
> Joins are what makes relational modeling interesting!
It is the central part of RM which is difficult to model using other methods and which requires high expertise in non-trivial use cases. One alternative to how multiple tables can be analyzed without joins is proposed in the concept-oriented model [1] which relies on two equal modeling constructs: sets (like RM) and functions. In particular, it is implemented in the Prosto data processing toolkit [2] and its Column-SQL language. The idea is that links between tables are used instead of joins. A link is formally a function from one set to another set.
[1] Joins vs. Links or Relational Join Considered Harmful https://www.researchgate.net/publication/301764816_Joins_vs_...
[2] https://github.com/asavinov/prosto data processing toolkit radically changing how data is processed by heavily relying on functions and operations with functions - an alternative to map-reduce and join-groupby
-
Excel 2.0 – Is there a better visual data model than a grid of cells?
One idea is to use columns instead of cells. Each column has a definition in terms of other columns which might also be defined in terms of other columns. If you change value(s) in some source column then these changes will propagate through the graph of these column definitions. Some fragments of this general idea were implemented in different systems, for example, Power BI or Airtable.
This approach was formalized in the concept-oriented model of data which relies on two basic elements: mathematical functions and mathematical sets. In contrast, most traditional data models rely on only sets. Functions are implemented as columns. The main difficulty in any formalization is how to deal with columns in multiple tables.
This approach was implemented in the Prosto data processing toolkit: https://github.com/asavinov/prosto
-
Show HN: Query any kind of data with SQL powered by Python
Having Python expressions within a declarative language is a really good idea because we can combine low level logic of computations of values with high level logic of set processing.
A similar approach is implemented in the Prosto data processing toolkit:
https://github.com/asavinov/prosto
Although Prosto is viewed as an alternative to Map-Reduce by relying on functions, it also supports Python User-Defined Functions in its Column-SQL:
-
Show HN: Hamilton, a Microframework for Creating Dataframes
Hamilton is more similar to the Prosto data processing toolkit which also relies on column operations defined via Python functions:
https://github.com/asavinov/prosto
However, Prosto allows for data processing via column operations in many tables (implemented as pandas data frames) by providing a column-oriented equivalents for joins and groupby (hence it has no joins and no groupbys which are known to be quite difficult and require high expertise).
Prosto also provides Column-SQL which might be simpler and more natural in many use cases.
The whole approach is based on the concept-oriented model of data which makes functions first-class elements of the model as opposed to having only sets in the relational model.
-
Against SQL
One alternative to SQL (type of thinking) is Column-SQL [1] which is based on a new data model. This model is relies on two equal constructs: sets (tables) and functions (columns). It is opposed to the relational algebra which is based on only sets and set operations. One benefit of Column-SQL is that it does not use joins and group-by for connectivity and aggregation, respectively, which are known to be quite difficult to understand and error prone in use. Instead, many typical data processing patterns are implemented by defining new columns: link columns instead of join, and aggregate columns instead of group-by.
More details about "Why functions and column-orientation" (as opposed to sets) can be found in [2]. Shortly, problems with set-orientation and SQL are because producing sets is not what we frequently need - we need new columns and not new table. And hence applying set operations is a kind of workaround due the absence of column operations.
This approach is implemented in the Prosto data processing toolkit [0] and Column-SQL[1] is a syntactic way to define its operations.
[0] https://github.com/asavinov/prosto Prosto is a data processing toolkit - an alternative to map-reduce and join-groupby
[1] https://prosto.readthedocs.io/en/latest/text/column-sql.html Column-SQL (work in progress)
[2] https://prosto.readthedocs.io/en/latest/text/why.html Why functions and column-orientation?
-
Feature Processing in Go
(Currently, it is not actively developed and the focus is moved to a similar project - https://github.com/asavinov/prosto - also focused on data preprocessing and feature engineering)
-
A note from our sponsor - InfluxDB
www.influxdata.com | 6 Jun 2023
Stats
asavinov/prosto is an open source project licensed under MIT License which is an OSI approved license.
The primary programming language of prosto is Python.