InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now. Learn more β
Clspv Alternatives
Similar projects and alternatives to clspv
-
-
InfluxDB
InfluxDB β Built for High-Performance Time Series Workloads. InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now.
-
Whisper
High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model (by Const-me)
-
DirectXShaderCompiler
This repo hosts the source for the DirectX Shader Compiler which is based on LLVM/Clang.
-
-
-
metal-cpp
Metal-cpp is a low-overhead C++ interface for Metal that helps developers add Metal functionality to graphics apps, games, and game engines that are written in C++.
-
-
Stream
Stream - Scalable APIs for Chat, Feeds, Moderation, & Video. Stream helps developers build engaging apps that scale to millions with performant and flexible Chat, Feeds, Moderation, and Video APIs and SDKs powered by a global edge network and enterprise-grade infrastructure.
-
-
-
kompute
General purpose GPU compute framework built on Vulkan to support 1000s of cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases. Backed by the Linux Foundation.
-
-
chipStar
chipStar is a tool for compiling and running HIP/CUDA on SPIR-V via OpenCL or Level Zero APIs.
-
-
-
-
-
-
Thrust
Discontinued [ARCHIVED] The C++ parallel algorithms library. See https://github.com/NVIDIA/cccl
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
clspv discussion
clspv reviews and mentions
- Show HN: HipScript β Run CUDA in the Browser with WebAssembly and WebGPU
-
Vcc β The Vulkan Clang Compiler
See https://github.com/google/clspv for an OpenCL implementation on Vulkan Compute. There are plenty of quirks involved because the two standards use different varieties of SPIR-V ("kernels" vs. "shaders") and provide different guarantees (Vulkan Compute doesn't care much about numerical accuracy). The Mesa folks are also looking into this as part of their RustiCL (a modern OpenCL implementation) and Zink (implementing OpenGL and perhaps OpenCL itself on Vulkan) projects.
-
AMD's CDNA 3 Compute Architecture
Vulkan Compute backends for numerical compute (as typified by both OpenCL and SYCL) are challenging, you can look at Google's cspv https://github.com/google/clspv project for the nitty gritty details. The lowest-effort path is actually via some combination of Rocm (for hardware that AMD bothers to support themselves) and the Mesa project's Rusticl backend (for everything else).
-
WSL with CUDA Support
D3D12 has more compute features than Vulkan has. It works out for DXVK because games often donβt use those, but itβll cause much more issues with CLon12.
By the way, if you are ready to have a _limited_ implementation without a full feature set because of Vulkan API limitations, clvk is a thing. The list of limitations of that approach is at https://github.com/google/clspv/blob/master/docs/OpenCLCOnVu...
tldr: Vulkan and OpenCL SPIR-V dialects are different, and the former has significant limitations affecting this use case
- Resources for Vulkan GPGPU searched
-
Low overhead C++ interface for Apple's Metal API
For OpenCL on DX12, the test suite doesn't pass yet. Every Khronos OpenCL 1.2 CTS test passes on at least one hardware driver, but there's none that pass them all. That is why CLon12 isn't submitted to Khronos's compliant products list yet.
The pointer semantics that Vulkan has aren't very amenable to implementing a compliant OpenCL implementation on top of. There are also some other limitatons: https://github.com/google/clspv/blob/master/docs/OpenCLCOnVu....
-
[Hardware Unboxed] - Apple M1 Pro Review - Is It Really Faster than Intel/AMD?
Vulkan is much more limited, notably because of Vulkan's SPIR-V dialect limitations. That makes a compliant OpenCL 1.2 impl on top of Vulkan impossible. (see: https://github.com/google/clspv/blob/master/docs/OpenCLCOnVulkan.md)
-
Cross Platform GPU-Capable Framework?
OpenCL really is your best bet for a cross-platform GPU-capable framework. OpenCL 3.0 cleared out a lot of the cruft from OpenCL 2.x so it's seeing a lot more adoption. The most cross-platform solution is still OpenCL 1.2, largely for MacOS, but OpenCL 3.0 is becoming more and more common for Windows and Linux and multiple devices. Even on platforms without native OpenCL support there are compatibility layers that implement OpenCL on top of DirectX (OpenCLOn12) or Vulkan (clvk and clspv).
-
A note from our sponsor - InfluxDB
www.influxdata.com | 16 Jul 2025
Stats
google/clspv is an open source project licensed under Apache License 2.0 which is an OSI approved license.
The primary programming language of clspv is LLVM.