Cl-cuda Alternatives
Similar projects and alternatives to cl-cuda
-
hash-array-mapped-trie
A hash array mapped trie implementation in c.
-
-
Scout APM
Less time debugging, more time building. Scout APM allows you to find and fix performance issues with no hassle. Now with error monitoring and external services monitoring, Scout is a developer's best friend when it comes to application development.
-
-
numericals
Numerical operations on arrays using SBCL (Common Lisp) [still experimental]
-
-
-
-
SonarLint
Deliver Cleaner and Safer Code - Right in Your IDE of Choice!. SonarLint is a free and open source IDE extension that identifies and catches bugs and vulnerabilities as you code, directly in the IDE. Install from your favorite IDE marketplace today.
-
awesome-cl
A curated list of awesome Common Lisp frameworks, libraries and other shiny stuff.
-
-
-
-
-
-
-
paip-lisp
Lisp code for the textbook "Paradigms of Artificial Intelligence Programming"
-
-
-
-
-
cl-cuda reviews and mentions
-
Why Lisp? (2015)
> You can write a lot of macrology to get around it, but there's a point where you want actual compiler writers to be doing this
this is not the job of compiler writers (although writing macros is akin to writing a compiler but i do not think that this is what you mean). in julia the numerical programming packages are not part of the standard library and a lot of it is wrappers around C++ code especially when the drivers to the underlining hardware are closed-source [0]. also here is the similar library in common lisp [1]
- Fast and Elegant Clojure: Idiomatic Clojure without sacrificing performance
-
Hacker News top posts: Aug 14, 2021
A Common Lisp Library to Use Nvidia CUDA\ (0 comments)
- A Common Lisp Library to Use Nvidia CUDA
-
Machine Learning in Lisp
Personally, I've been relying on the stream-based method using py4cl/2, mostly because I did not - and perhaps do not - have the knowledge and time to dig into the CFFI based method. The limitation is that this would get you less than 10000 python interactions per second. That is sufficient if you will be running a long running python task - and I have successfully run trivial ML programs using it, but any intensive array processing gets in the way. For this later task, there are a few emerging libraries like numcl and array-operations without SIMD (yet), and numericals using SIMD. For reasons mentioned on the readme, I recently cooked up dense-arrays. This has interchangeable backends and can also use cl-cuda. But barring that, the developer overhead of actually setting up native-CFFI ecosystem is still too high, and I'm back to py4cl/2 for tasks beyond array processing.
Stats
takagi/cl-cuda is an open source project licensed under MIT License which is an OSI approved license.
Popular Comparisons
Are you hiring? Post a new remote job listing for free.