Calibrated-backprojection-network Alternatives

Similar projects and alternatives to calibrated-backprojection-network based on common topics and language

NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a better calibrated-backprojection-network alternative or higher similarity.

Suggest an alternative to calibrated-backprojection-network

calibrated-backprojection-network reviews and mentions

Posts with mentions or reviews of calibrated-backprojection-network. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2021-10-13.
  • ICCV2021 oral paper improves generalization across sensor platforms
    1 project | news.ycombinator.com | 13 Oct 2021
    Our work "Unsupervised Depth Completion with Calibrated Backprojection Layers" has been accepted as an oral paper at ICCV 2021! We will be giving our talk during Session 10 (10/13 2-3 pm PST / 5-6 pm EST and 10/15 7-8 am PST / 10-11 am EST, https://www.eventscribe.net/2021/ICCV/fsPopup.asp?efp=WlJFS0tHTEMxNTgzMA%20&PosterID=428697%20&rnd=0.4100732&mode=posterinfo). This is joint work with Stefano Soatto at the UCLA Vision Lab.

    In a nutshell: we propose a method for point cloud densification (from camera, IMU, range sensor) that can generalize well across different sensor platforms. The figure in this link illustrates our improvement over existing works: https://github.com/alexklwong/calibrated-backprojection-network/blob/master/figures/overview_teaser.gif

    The slightly longer version: previous methods, when trained on one sensor platform, have problem generalizing to different ones when deployed to the wild. This is because they are overfitted to the sensors used to collect the training set. Our method takes image, sparse point cloud and camera calibration as input, which allows us to use a different calibration at test time. This significantly improves generalization to novel scenes captured by sensors different than those used during training. Amongst our innovations is a "calibrated backprojection layer" that imposes strong inductive bias on the network (as opposed trying to learn everything from the data). This design allows our method to achieve the state of the art on both indoor and outdoor scenarios while using a smaller model size and boasting a faster inference time.

    For those interested, here are the links to

    paper: https://arxiv.org/pdf/2108.10531.pdf

    code (pytorch): https://github.com/alexklwong/calibrated-backprojection-network

  • [R] ICCV2021 oral paper -- Unsupervised Depth Completion with Calibrated Backprojection Layers improves generalization across sensor platforms
    2 projects | reddit.com/r/MachineLearning | 13 Oct 2021
    Code for https://arxiv.org/abs/2108.10531 found: https://github.com/alexklwong/calibrated-backprojection-network
    2 projects | reddit.com/r/MachineLearning | 13 Oct 2021
    In a nutshell: we propose a method for point cloud densification (from camera, IMU, range sensor) that can generalize well across different sensor platforms. The figure in this link illustrates our improvement over existing works: https://github.com/alexklwong/calibrated-backprojection-network/blob/master/figures/overview_teaser.gif

Stats

Basic calibrated-backprojection-network repo stats
3
54
4.4
14 days ago

alexklwong/calibrated-backprojection-network is an open source project licensed under GNU General Public License v3.0 or later which is an OSI approved license.

SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
Find remote Python jobs at our new job board 99remotejobs.com. There is 1 new remote job listed recently.
Are you hiring? Post a new remote job listing for free.