GPUCompiler.jl

Reusable compiler infrastructure for Julia GPU backends. (by JuliaGPU)

GPUCompiler.jl Alternatives

Similar projects and alternatives to GPUCompiler.jl

NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a better GPUCompiler.jl alternative or higher similarity.

GPUCompiler.jl reviews and mentions

Posts with mentions or reviews of GPUCompiler.jl. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2022-04-06.
  • GenieFramework – Web Development with Julia
    4 projects | news.ycombinator.com | 6 Apr 2022
  • We Use Julia, 10 Years Later
    10 projects | news.ycombinator.com | 14 Feb 2022
    I don't think it's frowned upon to compile, many people want this capability as well. If you had a program that could be proven to use no dynamic dispatch it would probably be feasible to compile it as a static binary. But as long as you have a tiny bit of dynamic behavior, you need the Julia runtime so currently a binary will be very large, with lots of theoretically unnecessary libraries bundled into it. There are already efforts like GPUCompiler[1] that do fixed-type compilation, there will be more in this space in the future.

    [1] https://github.com/JuliaGPU/GPUCompiler.jl

  • Why Fortran is easy to learn
    19 projects | news.ycombinator.com | 7 Jan 2022
    Julia's compiler is made to be extendable. GPUCompiler.jl which adds the .ptx compilation output for example is a package (https://github.com/JuliaGPU/GPUCompiler.jl). The package manager of Julia itself... is an external package (https://github.com/JuliaLang/Pkg.jl). The built in SuiteSparse usage? That's a package too (https://github.com/JuliaLang/SuiteSparse.jl). It's fairly arbitrary what is "external" and "internal" in a language that allows that kind of extendability. Literally the only thing that makes these packages a standard library is that they are built into and shipped with the standard system image. Do you want to make your own distribution of Julia that changes what the "internal" packages are? Here's a tutorial that shows how to add plotting to the system image (https://julialang.github.io/PackageCompiler.jl/dev/examples/...). You could setup a binary server for that and now the first time to plot is 0.4 seconds.

    Julia's arrays system is built so that most arrays that are used are not the simple Base.Array. Instead Julia has an AbstractArray interface definition (https://docs.julialang.org/en/v1/manual/interfaces/#man-inte...) which the Base.Array conforms to, and many effectively standard library packages like StaticArrays.jl, OffsetArrays.jl, etc. conform to, and thus they can be used in any other Julia package, like the differential equation solvers, solving nonlinear systems, optimization libraries, etc. There is a higher chance that packages depend on these packages then that they do not. They are only not part of the Julia distribution because the core idea is to move everything possible out to packages. There's not only a plan to make SuiteSparse and sparse matrix support be a package in 2.0, but also ideas about making the rest of linear algebra and arrays themselves into packages where Julia just defines memory buffer intrinsic (with likely the Arrays.jl package still shipped with the default image). At that point, are arrays not built into the language? I can understand using such a narrow definition for systems like Fortran or C where the standard library is essentially a fixed concept, but that just does not make sense with Julia. It's inherently fuzzy.

  • Cuda.jl v3.3: union types, debug info, graph APIs
    8 projects | news.ycombinator.com | 13 Jun 2021
    A fun fact is that the GPUCompiler, which compiles the code to run in GPU's, is the current way to generate binaries without hiding the whole ~200mb of julia runtime in the binary.

    https://github.com/JuliaGPU/GPUCompiler.jl/ https://github.com/tshort/StaticCompiler.jl/

  • A note from our sponsor - talent.io
    www.talent.io | 25 Sep 2022
    Median salaries, most in-demand technologies, state of the remote work... all you need to know your worth on the market by tech recruitment platform talent.io Learn more →

Stats

Basic GPUCompiler.jl repo stats
5
84
9.0
17 days ago

JuliaGPU/GPUCompiler.jl is an open source project licensed under GNU General Public License v3.0 or later which is an OSI approved license.

Static code analysis for 29 languages.
Your projects are multi-language. So is SonarQube analysis. Find Bugs, Vulnerabilities, Security Hotspots, and Code Smells so you can release quality code every time. Get started analyzing your projects today for free.
www.sonarqube.org
Find remote jobs at our new job board 99remotejobs.com. There are 5 new remote jobs listed recently.
Are you hiring? Post a new remote job listing for free.