Solutions like Dependabot or Renovate update but don't merge dependencies. You need to do it manually while it could be fully automated! Add a Merge Queue to your workflow and stop caring about PR management & merging. Try Mergify for free. Learn more →
AMDGPU.jl Alternatives
Similar projects and alternatives to AMDGPU.jl
-
-
-
Mergify
Updating dependencies is time-consuming.. Solutions like Dependabot or Renovate update but don't merge dependencies. You need to do it manually while it could be fully automated! Add a Merge Queue to your workflow and stop caring about PR management & merging. Try Mergify for free.
-
-
NeuralPDE.jl
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
-
-
julia-distributed-computing
The ultimate guide to distributed computing in Julia
-
k8s-device-plugin
Kubernetes (k8s) device plugin to enable registration of AMD GPU to a container cluster (by RadeonOpenCompute)
-
InfluxDB
Collect and Analyze Billions of Data Points in Real Time. Manage all types of time series data in a single, purpose-built database. Run at any scale in any environment in the cloud, on-premises, or at the edge.
-
GPUCompiler.jl
Reusable compiler infrastructure for Julia GPU backends.
-
StaticCompiler.jl
Compiles Julia code to a standalone library (experimental)
-
-
-
-
distrobox
Use any linux distribution inside your terminal. Enable both backward and forward compatibility with software and freedom to use whatever distribution you’re more comfortable with. Mirror available at: https://gitlab.com/89luca89/distrobox
-
-
-
-
Pyston
A faster and highly-compatible implementation of the Python programming language.
-
-
-
-
SonarLint
Clean code begins in your IDE with SonarLint. Up your coding game and discover issues early. SonarLint is a free plugin that helps you find & fix bugs and security issues from the moment you start writing code. Install from your favorite IDE marketplace today.
AMDGPU.jl reviews and mentions
-
Why is AMD leaving ML to nVidia?
For myself, I use Julia to write my own software (that is run on AMD supercomputer) on Fedora system, using 6800XT. For my experience, everything worked nicely. To install you need to install rocm-opencl package with dnf, AMD Julia package (AMDGPU.jl), add yourself to video group and you are good to go. Also, Julia's KernelAbstractions.jl is a good to have, when writing portable code.
-
[GUIDE] How to install ROCm for GPU Julia programming via Distrobox
The Julia package AMDGPU.jl provides a Julia interface for AMD GPU (ROCm) programming. As they say, the package is being developed for Julia 1.7, 1.9 and above, but not 1.8. Therefore I downloaded the Julia binary of version 1.7.3 from the older releases Julia page.
-
First True Exascale Supercomputer
This is exciting news! What's also exciting is that it's not just C++ that can run on this supercomputer; there is also good (currently unofficial) support for programming those GPUs from Julia, via the AMDGPU.jl library (note: I am the author/maintainer of this library). Some of our users have been able to run AMDGPU.jl's testsuite on the Crusher test system (which is an attached testing system with the same hardware configuration as Frontier), as well as their own domain-specific programs that use AMDGPU.jl.
What's nice about programming GPUs in Julia is that you can write code once and execute it on multiple kinds of GPUs, with excellent performance. The KernelAbstractions.jl library makes this possible for compute kernels by acting as a frontend to AMDGPU.jl, CUDA.jl, and soon Metal.jl and oneAPI.jl, allowing a single piece of code to be portable to AMD, NVIDIA, Intel, and Apple GPUs, and also CPUs. Similarly, the GPUArrays.jl library allows the same behavior for idiomatic array operations, and will automatically dispatch calls to BLAS, FFT, RNG, linear solver, and DNN vendor-provided libraries when appropriate.
I'm personally looking forward to helping researchers get their Julia code up and running on Frontier so that we can push scientific computing to the max!
Library link: <https://github.com/JuliaGPU/AMDGPU.jl>
-
IA et Calcul scientifique dans Kubernetes avec le langage Julia, K8sClusterManagers.jl
GitHub - JuliaGPU/AMDGPU.jl: AMD GPU (ROCm) programming in Julia
-
Cuda.jl v3.3: union types, debug info, graph APIs
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/oneAPI.jl
These are both less mature than CUDA.jl, but are in active development.
- Unified programming model for all devices – will it catch on?
-
A note from our sponsor - Mergify
blog.mergify.com | 26 Sep 2023
Stats
JuliaGPU/AMDGPU.jl is an open source project licensed under GNU General Public License v3.0 or later which is an OSI approved license.
The primary programming language of AMDGPU.jl is Julia.