Our great sponsors
-
evidently
Evaluate and monitor ML models from validation to production. Join our Discord: https://discord.com/invite/xZjKRaNp8b
Consideration Number #5: For model observability look to Evidently.ai, Arize.ai, Arthur.ai, Fiddler.ai, Valohai.com, or whylabs.ai.
-
Consideration Number #2: Consider using model life cycle development and management platforms like MLflow, DVC, Weights & Biases, or SageMaker Studio. And Ray, Ray Tune, Ray Train (formerly Ray SGD), PyTorch and TensorFlow for distributed, compute-intensive and deep learning ML workloads.
-
Scout APM
Less time debugging, more time building. Scout APM allows you to find and fix performance issues with no hassle. Now with error monitoring and external services monitoring, Scout is a developer's best friend when it comes to application development.
-
Consideration Number #2: Consider using model life cycle development and management platforms like MLflow, DVC, Weights & Biases, or SageMaker Studio. And Ray, Ray Tune, Ray Train (formerly Ray SGD), PyTorch and TensorFlow for distributed, compute-intensive and deep learning ML workloads.