Did Schnorr destroy RSA? Show me the factors

This page summarizes the projects mentioned and recommended in the original post on news.ycombinator.com

Our great sponsors
  • InfluxDB - Power Real-Time Data Analytics at Scale
  • WorkOS - The modern identity platform for B2B SaaS
  • SaaSHub - Software Alternatives and Reviews
  • fplll

    Lattice algorithms using floating-point arithmetic

  • where ~= means "approximately equal to".

    u is chosen as the product of primes of all a_i > 0 and v is chosen to be the product of all primes where a_i < 0. The hope is that (u - v*N) is also p_{n-1}-smooth, which, as far as I understand, most of the math in the paper is trying to justify.

    The main innovation here, as far as I can tell, is that Schnorr is fiddling with the 'weighting' of the main diagonal when constructing the lattice basis. I interpret this as basically trying to randomize the initial lattice basis so that the chances of getting a different integer relation (for eventual construction of u,v) is more probable.

    I've been confused about this for over a decade as variants of this algorithm, and Schnorr's work in general, have been well published. For example, there's a paper from 2010 on "A Note on Integer Factorization Using Lattices" by Antonio Vera which discusses Schnorr's [3] construction.

    Is Schnorr trying to shout louder so people will listen or is there something else fundamentally flawed with this type of algorithm?

    Just a word of warning, LLL solves polynomial factorization in polynomial time (given a polynomial with integer coefficients, find it's factor polynomials also with integer coefficients) [4] and has been used to break other (now very old) cryptosystems [5]. If there's a candidate algorithm to solve integer factoring, lattice reduction (LLL, PSLQ, etc.) are it.

    I know of fplll that's a stand alone (FOSS) implementation of LLL and some extensions (BKZ, etc.) [6].

    [0] https://en.wikipedia.org/wiki/Lattice_reduction

    [1] https://en.wikipedia.org/wiki/Lenstra%E2%80%93Lenstra%E2%80%...

    [2] https://www.newton.ac.uk/files/seminar/20140509093009501-202...

    [3] https://arxiv.org/pdf/1003.5461.pdf

    [4] https://en.wikipedia.org/wiki/Factorization_of_polynomials#F...

    [5] https://web.eecs.umich.edu/~cpeikert/lic13/lec05.pdf

    [6] https://github.com/fplll/fplll

  • SchnorrGate

    Testing Schnorr's factorization claim in Sage

  • Here we have Léo Ducas testing Schnorr's new method in Sage: https://github.com/lducas/SchnorrGate

    Apparently, "[t]his suggest that the approach may be sensible, but that not all short vectors give rise to factoring relations, and that obtaining a sufficient success rate requires much larger lattice dimension than claimed in [Sch21]."

  • InfluxDB

    Power Real-Time Data Analytics at Scale. Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.

    InfluxDB logo
NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a more popular project.

Suggest a related project

Related posts