xgboost
MLflow
Our great sponsors
xgboost | MLflow | |
---|---|---|
6 | 40 | |
23,872 | 13,865 | |
0.7% | 2.4% | |
9.3 | 9.6 | |
7 days ago | 4 days ago | |
C++ | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
xgboost
-
xgboost VS CXXGraph - a user suggested alternative
2 projects | 28 Feb 2022
MLflow
-
Any MLOps platform you use?
I have an old labmate who uses a similar setup with MLFlow and can endorse it.
MLflow - an open-source platform for managing your ML lifecycle. What’s great is that they also support popular Python libraries like TensorFlow, PyTorch, scikit-learn, and R.
-
Selfhosted chatGPT with local contente
even for people who don't have an ML background there's now a lot of very fully-featured model deployment environments that allow self-hosting (kubeflow has a good self-hosting option, as do mlflow and metaflow), handle most of the complicated stuff involved in just deploying an individual model, and work pretty well off the shelf.
-
ML experiment tracking with DagsHub, MLFlow, and DVC
Here, we’ll implement the experimentation workflow using DagsHub, Google Colab, MLflow, and data version control (DVC). We’ll focus on how to do this without diving deep into the technicalities of building or designing a workbench from scratch. Going that route might increase the complexity involved, especially if you are in the early stages of understanding ML workflows, just working on a small project, or trying to implement a proof of concept.
-
AI in DevOps?
MLflow
-
AWS re:invent 2022 wish list
I am seeing growing demand for MLflow (https://mlflow.org/) and I am seeing a lot of people looking at Databricks as commercial offering for MLflow. Alternatively, some popele are implementing something like Managing your Machine Learning lifecycle with MLflow. Therefore, I think this was on my wish list last year, but I really hope AWS announce a Managed MLFlow Service. I know version 2.X is too new but at least 1.X would be great start.
-
✨ 7 Best Machine Learning Experiment Logging Tools in 2022 🚀
🔗 https://mlflow.org
- [D] Who here are convinced that they have a really good setup that keeps track of their ML experiments?
-
JBCNConf 2022: A great farewell
She made mentions to ML-Ops and MLFlow including Vertex AI the GCP implementation. I will post the video as soon as it is available. In the meantime, you can enjoy any other talk from Nerea Luis
-
Keeping Your Machine Learning Models on the Right Track: Getting Started with MLflow, Part 2
In our last post, we discussed the importance of tracking Machine Learning experiments, metrics and parameters. We also showed how easy it is to get started in these topics by leveraging the power of MLflow (for those who are not aware, MLflow is currently the de-facto standard platform for machine learning experiment and model management).
What are some alternatives?
clearml - ClearML - Auto-Magical CI/CD to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
Sacred - Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA.
zenml - ZenML 🙏: Build portable, production-ready MLOps pipelines. https://zenml.io.
Prophet - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
MLP Classifier - A handwritten multilayer perceptron classifer using numpy.
guildai - Experiment tracking, ML developer tools
dvc - 🦉Data Version Control | Git for Data & Models | ML Experiments Management
tensorflow - An Open Source Machine Learning Framework for Everyone
Keras - Deep Learning for humans
neptune-client - :ledger: Experiment tracking tool and model registry