pytest
Pandas
pytest | Pandas | |
---|---|---|
39 | 427 | |
12,865 | 45,967 | |
0.9% | 1.0% | |
9.8 | 9.9 | |
4 days ago | 3 days ago | |
Python | Python | |
MIT License | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
pytest
-
Most Effective Approaches for Debugging Applications
Large-scale changes to fix a bug often introduce unintended side effects, making incremental fixes a safer approach. Robbin Schuchmann, Co-Founder of EOR Overview, advises, “Applying fixes incrementally is the most reliable way to correct bugs in applications.” By adjusting one variable or function at a time and validating each change with tools like pytest or Mocha, developers ensure fixes are effective without destabilizing the system. This aligns with test-driven development (TDD), which a 2022 IEEE study found reduces defect rates by 15%. Incremental fixes also simplify rollbacks, preserving stability.
-
10 Useful Tools and Libraries for Python Developers
5. Pytest - Simple Yet Powerful Testing
-
How to Run Tests in Visual Studio Code: A Complete Guide
Python: pytest
- Testando código que chama serviços da AWS
- Ruby "Thread Contention" Is Simply GVL Queuing
-
staging and QA will not save your systems
Unit Testing: JUnit, Mocha, PyTest
-
How ReportPortal "Made" Pytest Run Twice
Quotation marks in pytest command collects duplicate tests #7012
-
The Top 9️⃣ Repositories to learn Python programming + Resources (Extra) 🤯
⭐️ Pytest on GitHub.
- Local Variables as Accidental Breadcrumbs for Faster Debugging
-
Integrating Lab Equipment into pytest-Based Tests
In this blog post I want to demonstrate how my lab equipment such as a lab power supply or a digital multimeter (DMM) have been integrated into some pytest-based tests. Would love to get your feedback and thoughts! 🚀
Pandas
-
Don't Know These 6 Tools? No Wonder Your Python Development Is So Slow
👉 https://pandas.pydata.org/
- Open Source Can't Coordinate
-
Top Programming Languages for AI Development in 2025
Libraries for data science and deep learning that are always changing
-
How to import sample data into a Python notebook on watsonx.ai and other questions…
# Read the content of nda.txt try: import os, types import pandas as pd from botocore.client import Config import ibm_boto3 def __iter__(self): return 0 # @hidden_cell # The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials. # You might want to remove those credentials before you share the notebook. cos_client = ibm_boto3.client(service_name='s3', ibm_api_key_id='api-generated', ibm_auth_endpoint="https://iam.cloud.ibm.com/identity/token", config=Config(signature_version='oauth'), endpoint_url='https://s3.direct.us-south.cloud-object-storage.appdomain.cloud') bucket = 'your-bucket-referenced-here' object_key = 'nda__da__crxq8b2hmy.txt' # load data of type "text/plain" into a botocore.response.StreamingBody object. # Please read the documentation of ibm_boto3 and pandas to learn more about the possibilities to load the data. # ibm_boto3 documentation: https://ibm.github.io/ibm-cos-sdk-python/ # pandas documentation: http://pandas.pydata.org/ streaming_body_1 = cos_client.get_object(Bucket=bucket, Key=object_key)['Body'] with open("nda.txt", "r") as f: nda_content = f.read() print("Content of nda.txt has been read.") except FileNotFoundError: print("Error: nda.txt not found in the current directory.") nda_content = "" # Initialize knowledge source content_source = CrewDoclingSource( file_paths=["..."] )
-
How I Hacked Uber’s Hidden API to Download 4379 Rides
As with any web scraping or data processing project, I had to write a fair amount of code to clean this up and shape it into a format I needed for further analysis. I used a combination of Pandas and regular expressions to clean it up (full code here).
-
Show HN: Aiopandas – Async .apply() and .map() for Pandas, Faster API/LLMs Calls
Can this be merged into pandas?
Pandas does not currently install tqdm by default.
pandas-dev/pandas//pyproject.toml [project.optional-dependencies] https://github.com/pandas-dev/pandas/blob/main/pyproject.tom...
Dask solves for various adjacent problems; IDK if pandas, dask, or dask-cudf would be faster with async?
Dask docs > Scheduling > Dask Distributed (local) https://docs.dask.org/en/stable/scheduling.html#dask-distrib... :
> Asynchronous Futures API
Dask docs > Deploy Dask Clusters; local multiprocessing poll, k8s (docker desktop, podman-desktop,), public and private clouds, dask-jobqueue (SLURM,), dask-mpi:
-
We Are Destroying Software
They are when the only reason they are flagged as security updates is because some a single group deems a very rare, obscure edge case as a HIGH severity vuln when in practice it rarely is => this leads to having to upgrade a minor version of a library that ends up causing breaking changes.
This is the recent thread I'm down. Pandas 2.2 broke SQLalchemy backwards compatibility: https://stackoverflow.com/questions/38332787/pandas-to-sql-t... + https://github.com/pandas-dev/pandas/issues/57049#issuecomme...
-
Must-Know 2025 Developer’s Roadmap and Key Programming Trends
Python’s Growth in Data Work and AI: Python continues to lead because of its easy-to-read style and the huge number of libraries available for tasks from data work to artificial intelligence. Tools like TensorFlow and PyTorch make it a must-have. Whether you’re experienced or just starting, Python’s clear style makes it a good choice for diving into machine learning. Actionable Tip: If you’re new to Python, try projects that combine data with everyday problems. For example, build a simple recommendation system using Pandas and scikit-learn.
-
Sample Super Store Analysis Using Python & Pandas
This tutorial provides a concise and foundational guide to exploring a dataset, specifically the Sample SuperStore dataset. This dataset, which appears to originate from a fictional e-commerce or online marketplace company's annual sales data, serves as an excellent example for learning and how to work with real-world data. The dataset includes a variety of data types, which demonstrate the full range of capabilities that the Pandas library, written in Python can offer.
-
Bullish on AI infrastructure, bearish on AI developer frameworks
Data preprocessing and manipulation: Libraries like Pandas solve for the messy, real-world challenge of efficiently wrangling and cleaning large datasets. Without it, you'd be reinventing functionality for basic tasks like merging, filtering, or aggregating data.
What are some alternatives?
Slash - The Slash testing infrastructure
Airflow - Apache Airflow - A platform to programmatically author, schedule, and monitor workflows
Robot Framework - Generic automation framework for acceptance testing and RPA
orange - 🍊 :bar_chart: :bulb: Orange: Interactive data analysis
nose2 - The successor to nose, based on unittest2
Cubes - [NOT MAINTAINED] Light-weight Python OLAP framework for multi-dimensional data analysis