promscale
prometheus
promscale | prometheus | |
---|---|---|
18 | 481 | |
1,330 | 59,398 | |
- | 1.1% | |
0.0 | 9.9 | |
over 1 year ago | 1 day ago | |
Go | Go | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
promscale
-
Promscale Deprecation
Now that Promscale has been deprecated, what are the other ideal means of self-hosted long term Prometheus storage?
-
What do you use when you have to store high cardinality metrics?
Oh wow, I browsed the project just a few weeks ago, didn't see it then. I see the deprecation is recent (https://github.com/timescale/promscale/issues/1836)
- Promscale Has Been Discontinued
-
Show HN: SigNoz – open-source alternative to DataDog, NewRelic
They say:
> if you want to have a seamless experience between metrics and traces, then current experience of stitching together Prometheus & Jaeger is not great.
But I wonder if using Promscale https://github.com/timescale/promscale would make Prometheus & Jaeger not such a big problem as SigNoz imply.
Promscale readme:
> Promscale is a unified metric and trace observability backend for Prometheus, Jaeger and OpenTelemetry built on PostgreSQL and TimescaleDB.
Either way, SigNoz seems interesting indeed. And am glad to see that SigNoz supports OpenTelemetry.
-
Timescale raises $110M Series C
Hi! So the team is over 100 at this point, but engineering effort is spread across multiple products at this point.
The core timescaledb repo [0] has 10-15 primary engineers (although we are aggressively hiring for database internal engineers), with a few others working on DB hyperfunctions and our function pipelining [1] in a separate extension [2]. I think generally the set of folks who contribute to low-level database internals in C is just smaller than other type of projects.
We also have our promscale product [3], which is our observability backend powered by SQL & TimescaleDB.
And then there is Timescale Cloud, which is obviously a large engineering effort (most of which does not happen in public repos).
And we are hiring. Fully remote & global.
https://www.timescale.com/careers
[0] https://github.com/timescale/timescaledb
[1] https://www.timescale.com/blog/function-pipelines-building-f...
[2] https://github.com/timescale/timescaledb-toolkit
[3] https://github.com/timescale/promscale ; https://github.com/timescale/tobs
-
Tools for Querying Logs with SQL
Promscale is a connector for Prometheus, one of the leading open-source monitoring solutions. Promscale is developed by Timescale, a time series database with full compatibility to Postgres. Since logs are time series events, Timescale developed Promscale to ingest events from Prometheus and make them available in SQL. You can install Promscale in numerous ways.
- New release Promscale
-
Can Apache Druid replace Thanos? Can they complement themself?
In case it helps, Promscale (from Timescale) offers long-term storage for Prometheus data and supports both PromQL and SQL queries. Here's the project page: https://www.timescale.com/promscale/ and the repo is here https://github.com/timescale/promscale It also support OpenTelemetry tracing if that's of interest.
-
Benchmarking: TimescaleDB vs. ClickHouse
At first, let's give the definition of `time series`. This is a series of (timestamp, value) pairs ordered by timestamp. The `value` may contain arbitrary data - a floating-point value, a text, a json, a data structure with many columns, etc. Each time series is uniquely identified by its name plus an optional set of {label="value"} labels. For example, temperature{city="London",country="UK"} or log_stream{host="foobar",datacenter="abc",app="nginx"}.
ClickHouse is perfectly optimized for storing and querying of such time series, including metrics. That's true that ClickHouse isn't optimized for handling millions of tiny inserts per second. It prefers infrequent batches with big number of rows per each batch. But this isn't the real problem in practice, because:
1) ClickHouse provides Buffer table engine for frequent inserts.
2) It is easy to create a special proxy app or library for data buffering before sending it to ClickHouse.
TimescaleDB provides Promscale [1] - a service, which allows using TimescaleDB as a storage backend for Prometheus. Unfortunately, it doesn't show outstanding performance comparing to Prometheus itself and to other remote storage solutions for Prometheus. Promscale requires more disk space, disk IO, CPU and RAM according to production tests [2], [3].
[1] https://github.com/timescale/promscale
[2] https://abiosgaming.com/press/high-cardinality-aggregations/
[3] https://valyala.medium.com/promscale-vs-victoriametrics-reso...
Full disclosure: I'm CTO at VictoriaMetrics - competing solution for TimescaleDB. VictoriaMetrics is built on top of architecture ideas from ClickHouse.
-
Zabbix anything I should know?
Promscale + TimescaleDB
prometheus
-
10+ Most Powerful GitHub Repos I Discovered in 2025 (You’ll Wish You Knew Sooner)
4. Prometheus (prometheus/prometheus) – Metrics Monitoring & Alerting
- 16 Essential Tools for DevOps & SRE: Monitoring & Logging Mastery
-
Autonomous SRE: Revolutionizing Reliability with AI, Automation, and Chaos Engineering
Tools like Prometheus for metric collection and Grafana for visualization and alerting form the backbone of modern observability stacks, providing the raw data that AI/ML models can then process for predictive insights.
-
Building an Online Code Compiler: A Complete Guide
Prometheus - Metrics collection and alerting
-
Error Budget Is All You Need - Part 1
Now, let’s implement it using Prometheus syntax:
-
Your Essential Toolkit for DevOps & SRE: Mastering Monitoring and Logging
Official Website: Prometheus
-
Using Dapr and OpenTelemetry for Metrics
In modern cloud-native applications, observability isn't optional—it's essential. When building distributed applications with Dapr (Distributed Application Runtime), monitoring becomes even more critical to ensure your services behave as expected. Thankfully, Dapr has built-in support for exposing metrics in Prometheus format, making it straightforward to integrate and monitor your applications.
-
Why Golang Is Such a Powerful Language
Prometheus is a monitoring system. It collects metrics from your apps and systems and lets you alert when something goes wrong. It’s also written in Go and is part of the Cloud Native stack.
-
How to add rate limiting to a Spring Boot app using TigerBeetle
Grafana, Prometheus and Tempo wired up correctly in the docker-compose file
-
PostgreSQL Maximalism
Alternatives to: DuckDB, Apache Cassandra, Amazon RedShift, Google BigQuery, Snowflake, InfluxDB, Prometheus, Amazon Timestream
What are some alternatives?
TimescaleDB - A time-series database for high-performance real-time analytics packaged as a Postgres extension
JavaMelody - JavaMelody : monitoring of JavaEE applications
kube-thanos - Kubernetes specific configuration for deploying Thanos.
Glowroot - Easy to use, very low overhead, Java APM
pmacct - pmacct is a small set of multi-purpose passive network monitoring tools [NetFlow IPFIX sFlow libpcap BGP BMP RPKI IGP Streaming Telemetry].
Jolokia - JMX on Capsaicin