libRL
Numba
libRL | Numba | |
---|---|---|
1 | 127 | |
3 | 10,137 | |
- | 1.3% | |
2.3 | 9.8 | |
over 1 year ago | 7 days ago | |
Python | Python | |
GNU General Public License v3.0 only | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
libRL
Numba
-
CuPy: NumPy and SciPy for GPU
I'm surprised to see pytorch and Jax mentioned as alternatives but not numba : https://github.com/numba/numba
I've recently had to implement a few kernels to lower the memory footprint and runtime of some pytorch function : it's been really nice because numba kernels have type hints support (as opposed to raw cupy kernels).
- I Use Nim Instead of Python for Data Processing
- Nvidia Warp: A Python framework for high performance GPU simulation and graphics
-
Mojo🔥: Head -to-Head with Python and Numba
Around the same time, I discovered Numba and was fascinated by how easily it could bring huge performance improvements to Python code.
-
Is anyone using PyPy for real work?
Simulations are, at least in my experience, numba’s [0] wheelhouse.
[0]: https://numba.pydata.org/
-
Any data folks coding C++ and Java? If so, why did you leave Python?
That's very cool. Numba introduces just-in-time compilation to Python via decorators and its sole reason for being is to turn everything it can into abstract syntax trees.
- Using Matplotlib with Numba to accelerate code
-
Python Algotrading with Machine Learning
A super-fast backtesting engine built in NumPy and accelerated with Numba.
-
PYTHON vs OCTAVE for Matlab alternative
Regarding speed, I don't agree this is a good argument against Python. For example, it seems no one here has yet mentioned numba, a Python JIT compiler. With a simple decorator you can compile a function to machine code with speeds on par with C. Numba also allows you to easily write cuda kernels for GPU computation. I've never had to drop down to writing C or C++ to write fast and performant Python code that does computationally demanding tasks thanks to numba.
-
Codon: Python Compiler
Just for reference,
* Nuitka[0] "is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11."
* Pypy[1] "is a replacement for CPython" with builtin optimizations such as on the fly JIT compiles.
* Cython[2] "is an optimising static compiler for both the Python programming language and the extended Cython programming language... makes writing C extensions for Python as easy as Python itself."
* Numba[3] "is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."
* Pyston[4] "is a performance-optimizing JIT for Python, and is drop-in compatible with ... CPython 3.8.12"
[0] https://github.com/Nuitka/Nuitka
[1] https://www.pypy.org/
[2] https://cython.org/
[3] https://numba.pydata.org/
[4] https://github.com/pyston/pyston