Keras
Deep Learning for humans (by keras-team)
Pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration (by pytorch)

CodeRabbit: AI Code Reviews for Developers
Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
coderabbit.ai
featured

Nutrient - The #1 PDF SDK Library
Bad PDFs = bad UX. Slow load times, broken annotations, clunky UX frustrates users. Nutrient’s PDF SDKs gives seamless document experiences, fast rendering, annotations, real-time collaboration, 100+ features. Used by 10K+ devs, serving ~half a billion users worldwide. Explore the SDK for free.
nutrient.io
featured
Keras | Pytorch | |
---|---|---|
85 | 384 | |
62,690 | 87,764 | |
0.4% | 1.7% | |
9.9 | 10.0 | |
2 days ago | 5 days ago | |
Python | Python | |
Apache License 2.0 | BSD 3-clause "New" or "Revised" License |
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Keras
Posts with mentions or reviews of Keras.
We have used some of these posts to build our list of alternatives
and similar projects. The last one was on 2025-01-02.
-
Building a Sarcasm Detection System with LSTM and GloVe: A Complete Guide
Keras API reference
- Submitting GPU jobs to Slurm @ Loyola University Chicago
-
Top 8 OpenSource Tools for AI Startups
Star on GitHub ⭐ - Keras
-
Top 5 Production-Ready Open Source AI Libraries for Engineering Teams
At its heart is TensorFlow Core, which provides low-level APIs for building custom models and performing computations using tensors (multi-dimensional arrays). It has a high-level API, Keras, which simplifies the process of building machine learning models. It also has a large community, where you can share ideas, contribute, and get help if you are stuck.
-
Las 10 Mejores Herramientas de Inteligencia Artificial de Código Abierto
(https://dev-to-uploads.s3.amazonaws.com/uploads/articles/92cup4lywcjfq83xg0ea.png)
-
Using Google Magika to build an AI-powered file type detector
The core model architecture for Magika was implemented using Keras, a popular open source deep learning framework that enables Google researchers to experiment quickly with new models.
- Side Quest #3: maybe the real Deepfakes were the friends we made along the way
-
Library for Machine learning and quantum computing
Keras
-
My Favorite DevTools to Build AI/ML Applications!
As a beginner, I was looking for something simple and flexible for developing deep learning models and that is when I found Keras. Many AI/ML professionals appreciate Keras for its simplicity and efficiency in prototyping and developing deep learning models, making it a preferred choice, especially for beginners and for projects requiring rapid development.
- Release: Keras 3.3.0
Pytorch
Posts with mentions or reviews of Pytorch.
We have used some of these posts to build our list of alternatives
and similar projects. The last one was on 2025-02-14.
-
torch.export()
GraphModule compiles every instruction into low-level ATen operations.
-
10 Must-Have AI Tools to Supercharge Your Software Development
8. TensorFlow and PyTorch: These frameworks support AI and machine learning integrations, allowing developers to build and deploy intelligent models and workflows. TensorFlow is widely used for deep learning applications, offering pre-trained models and extensive documentation. PyTorch provides flexibility and ease of use, making it ideal for research and experimentation. Both frameworks support neural network design, training, and deployment in production environments. Download TensorFlow here and Download PyTorch here.
-
Automating Enhanced Due Diligence in Regulated Applications
Frameworks like TensorFlow and PyTorch can help you build and train models for various tasks, such as risk scoring, anomaly detection, and pattern recognition.
-
Must-Know 2025 Developer’s Roadmap and Key Programming Trends
Python’s Growth in Data Work and AI: Python continues to lead because of its easy-to-read style and the huge number of libraries available for tasks from data work to artificial intelligence. Tools like TensorFlow and PyTorch make it a must-have. Whether you’re experienced or just starting, Python’s clear style makes it a good choice for diving into machine learning. Actionable Tip: If you’re new to Python, try projects that combine data with everyday problems. For example, build a simple recommendation system using Pandas and scikit-learn.
-
Decorator JITs: Python as a DSL
Basically this style of code - https://github.com/pytorch-labs/attention-gym/pull/84/files - has issues like this - https://github.com/pytorch/pytorch/pull/137452 https://github.com/pytorch/pytorch/issues/144511 https://github.com/pytorch/pytorch/issues/145869
For some higher level context, see https://pytorch.org/blog/flexattention/
-
Building an AI-powered Financial Data Analyzer with NodeJS, Python, SvelteKit, and TailwindCSS - Part 0
The AI Service will be built using aiohttp (asynchronous Python web server) and integrates PyTorch, Hugging Face Transformers, numpy, pandas, and scikit-learn for financial data analysis.
- PyTorch 2.6.0 Release
-
Responsible Innovation: Open Source Best Practices for Sustainable AI
Open source frameworks like PyTorch are already enabling Machine Learning breakthroughs because they’re living communities where great things happen through:
-
Golang Vs. Python Performance: Which Programming Language Is Better?
- Data Science and AI: TensorFlow, PyTorch and scikit-learn are only a few of the standard Python libraries. - Web Development: development of web-based applications is made simple by frameworks such as Flask as well as Django. - Prototyping: Python's ease of use lets you quickly iterate and testing concepts.
-
How to resolve the dlopen problem with Nvidia and PyTorch or Tensorflow inside a virtual env
By chance, Tensorflow or PyTorch can work with pip packages from Nvidia.
What are some alternatives?
When comparing Keras and Pytorch you can also consider the following projects:
scikit-learn - scikit-learn: machine learning in Python
Pandas - Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
tensorflow - An Open Source Machine Learning Framework for Everyone
mediapipe - Cross-platform, customizable ML solutions for live and streaming media.
MLP Classifier - A handwritten multilayer perceptron classifer using numpy.

CodeRabbit: AI Code Reviews for Developers
Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
coderabbit.ai
featured

Nutrient - The #1 PDF SDK Library
Bad PDFs = bad UX. Slow load times, broken annotations, clunky UX frustrates users. Nutrient’s PDF SDKs gives seamless document experiences, fast rendering, annotations, real-time collaboration, 100+ features. Used by 10K+ devs, serving ~half a billion users worldwide. Explore the SDK for free.
nutrient.io
featured