flashtext
gensim
flashtext | gensim | |
---|---|---|
8 | 18 | |
5,597 | 15,717 | |
- | 0.4% | |
0.0 | 6.9 | |
5 months ago | 3 months ago | |
Python | Python | |
MIT License | GNU Lesser General Public License v3.0 only |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
flashtext
-
Show HN: LLMs can generate valid JSON 100% of the time
I have some other comment on this thread where I point out why I don’t think it’s superficial. Would love to get your feedback on that if you feel like spending more time on this thread.
But it’s not obscure? FlashText was a somewhat popular paper at the time (2017) with a popular repo (https://github.com/vi3k6i5/flashtext). Their paper was pretty derivative of Aho-Corasick, which they cited. If you think they genuinely fucked up, leave an issue on their repo (I’m, maybe to your surprise lol, not the author).
Anyway, I’m not a fan of the whatabboutery here. I don’t think OG’s paper is up to snuff on its lit review - do you?
-
[P] what is the most efficient way to pattern matching word-to-word?
The library flashtext basically creates these tries based on keywords you give it.
-
What is the most efficient way to find substrings in strings?
Seems like https://github.com/vi3k6i5/flashtext would be better suited here.
-
[P] Library for end-to-end neural search pipelines
I started developing this tool after using haystack. Pipelines are easier to build with cherche because of the operators. Also, cherche offers FlashText, Lunr.py retrievers that are not available in Haystack and that I needed for the project I wanted to solve. Haystack is clearly more complete but I think also more complex to use.
-
How can I speed up thousands of re.subs()?
For the text part not requiring regex, https://github.com/vi3k6i5/flashtext might help
-
My first NLP pipeline using SpaCy: detect news headlines with company acquisitions
Spacy for parsing the Headlines, remove stop words etc. might be ok but I think the problem is quite narrow so a set of fixed regex searches might work quite well. If regex is too slow, try: https://github.com/vi3k6i5/flashtext
-
What tech do I need to learn to programmatically parse ingredients from a recipe?
I would probably use something like [flashtext](https://github.com/vi3k6i5/flashtext) which should not be too hard to port to kotlin.
- Quickest way to check that 14000 strings arent in An original string.
gensim
- Aggregating news from different sources
-
Understanding How Dynamic node2vec Works on Streaming Data
This is our optimization problem. Now, we hope that you have an idea of what our goal is. Luckily for us, this is already implemented in a Python module called gensim. Yes, these guys are brilliant in natural language processing and we will make use of it. 🤝
-
Topic modeling --- allow multiple topics per statement
Try LDA as implemented in gemsin https://github.com/RaRe-Technologies/gensim
-
Is it home bias or is data wrangling for machine learning in python much less intuitive and much more burdensome than in R?
Standout python NLP libraries include Spacy and Gensim, as well as pre-trained model availability in Hugginface. These libraries have widespread use in and support from industry and it shows. Spacy has best-in-class methods for pre-processing text for further applications. Gensim helps you manage your corpus of documents, and contains a lot of different tools for solving a common industry task, topic modeling.
- sentence transformer vector dimensionality reduction to 1
- Where to start for recommendation systems
-
GET STARTED WITH TOPIC MODELLING USING GENSIM IN NLP
Here we have to install the gensim library in a jupyter notebook to be able to use it in our project, consider the code below;
-
Show HN: I built a site that summarizes articles and PDFs using NLP
Nice work! I wonder if you're going the same challenges that gensim had for being generic in summarization.
For context:
> Despite its general-sounding name, the module will not satisfy the majority of use cases in production and is likely to waste people's time.
https://github.com/RaRe-Technologies/gensim/wiki/Migrating-f...
-
[Research] Text summarization using Python, that can run on Android devices?
TextRank will work without any problems. https://radimrehurek.com/gensim/
-
Topic modelling with Gensim and SpaCy on startup news
For the topic modelling itself, I am going to use Gensim library by Radim Rehurek, which is very developer friendly and easy to use.
What are some alternatives?
KeyBERT - Minimal keyword extraction with BERT
BERTopic - Leveraging BERT and c-TF-IDF to create easily interpretable topics.
rake-nltk - Python implementation of the Rapid Automatic Keyword Extraction algorithm using NLTK.
scikit-learn - scikit-learn: machine learning in Python
magnitude - A fast, efficient universal vector embedding utility package.
MLflow - Open source platform for the machine learning lifecycle
Optimus - :truck: Agile Data Preparation Workflows made easy with Pandas, Dask, cuDF, Dask-cuDF, Vaex and PySpark
tensorflow - An Open Source Machine Learning Framework for Everyone
yake - Single-document unsupervised keyword extraction
Keras - Deep Learning for humans
AnnA_Anki_neuronal_Appendix - Using machine learning on your anki collection to enhance the scheduling via semantic clustering and semantic similarity
flair - A very simple framework for state-of-the-art Natural Language Processing (NLP)