flash-attention
RWKV-LM
flash-attention | RWKV-LM | |
---|---|---|
27 | 84 | |
15,061 | 13,004 | |
4.3% | 2.3% | |
9.2 | 8.9 | |
3 days ago | 8 days ago | |
Python | Python | |
BSD 3-clause "New" or "Revised" License | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
flash-attention
-
FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-Precision
1) Pretty much, it's mathematically equivalent. The only software issues are things like managing dependency versions and data formats in-memory, but Flash Attention 2 is already built into HuggingFace and other popular libraries. Flash Attention 3 probably will be soon, although it requires an H100 GPU to run
2) Flash Attention 2 added support for GQA in past version updates:
https://github.com/Dao-AILab/flash-attention
3) They're comparing this implementation of Flash Attention (which is written in raw CUDA C++) to the Triton implementation of a similar algorithm (which is written in Triton): https://triton-lang.org/main/getting-started/tutorials/06-fu...
-
How the Transformer Architecture Was Likely Discovered: A Step-by-Step Guide
If you're looking for an implementation, I highly recommend checking out fast attention [https://github.com/Dao-AILab/flash-attention]. It's my go-to, and far better than anything we could whip up here using just PyTorch or TensorFlow.
-
Interactive Coloring with ControlNet
* Even if I bought a 3090, I would have to get a computer to go with it, along with a PSU and some cooling. Don't know where to start with that.
[1] https://github.com/Dao-AILab/flash-attention/issues/190
-
Coding Self-Attention, Multi-Head Attention, Cross-Attention, Causal-Attention
highly recommend using Tri's implementation https://github.com/Dao-AILab/flash-attention rotary should be built in, and some group overseas even contributed alibi
-
PSA: new ExLlamaV2 quant method makes 70Bs perform much better at low bpw quants
Doesn't seem so https://github.com/Dao-AILab/flash-attention/issues/542 No updates for a while.
-
VLLM: 24x faster LLM serving than HuggingFace Transformers
I wonder how this compares to Flash Attention (https://github.com/HazyResearch/flash-attention), which is the other "memory aware" Attention project I'm aware of.
I guess Flash Attention is more about utilizing memory GPU SRam correctly, where this is more about using the OS/CPU memory better?
-
Hacking Around ChatGPT’s Character Limits with the Code Interpreter
https://github.com/HazyResearch/flash-attention
- Flash Attention on Consumer
-
Unlimiformer: Long-Range Transformers with Unlimited Length Input
After a very quick read, that's my understanding too: It's just KNN search. So I agree on points 1-3. When something works well, I don't care much about point 4.
I've had only mixed success with KNN search. Maybe I haven't done it right? Nothing seems to work quite as well for me as explicit token-token interactions by some form of attention, which as we all know is too costly for long sequences (O(n²)). Lately I've been playing with https://github.com/hazyresearch/safari , which uses a lot less compute and seems promising. Otherwise, for long sequences I've yet to find something better than https://github.com/HazyResearch/flash-attention for n×n interactions and https://github.com/glassroom/heinsen_routing for n×m interactions. If anyone here has other suggestions, I'd love to hear about them.
-
Ask HN: Bypassing GPT-4 8k tokens limit
Longer sequence length in transformers is an active area of research (see e.g the great work from the Flash-attention team - https://github.com/HazyResearch/flash-attention), and I'm sure will improve things dramatically very soon.
RWKV-LM
-
Do LLMs need a context window?
https://github.com/BlinkDL/RWKV-LM#rwkv-discord-httpsdiscord... lists a number of implementations of various versions of RWKV.
https://github.com/BlinkDL/RWKV-LM#rwkv-parallelizable-rnn-w... :
> RWKV: Parallelizable RNN with Transformer-level LLM Performance (pronounced as "RwaKuv", from 4 major params: R W K V)
> RWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the "GPT" mode to quickly compute the hidden state for the "RNN" mode.
> So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding (using the final hidden state).
> "Our latest version is RWKV-6,*
- People who've used RWKV, whats your wishlist for it?
- Paving the way to efficient architectures: StripedHyena-7B
-
Understanding Deep Learning
That is not true. There are RNNs with transformer/LLM-like performance. See https://github.com/BlinkDL/RWKV-LM.
-
Q-Transformer: Scalable Reinforcement Learning via Autoregressive Q-Functions
This is what RWKV (https://github.com/BlinkDL/RWKV-LM) was made for, and what it will be good at.
Wow. Pretty darn cool! <3 :'))))
-
Personal GPT: A tiny AI Chatbot that runs fully offline on your iPhone
Thanks for the support! Two weeks ago, I'd have said longer contexts on small on-device LLMs are at least a year away, but developments from last week seem to indicate that it's well within reach. Once the low hanging product features are done, I think it's a worthy problem to spend a couple of weeks or perhaps even months on. Speaking of context lengths, recurrent models like RWKV technically have infinite context lengths, but in practice the context slowly fades away after a few thousands of tokens.
-
"If you see a startup claiming to possess top-secret results leading to human level AI, they're lying or delusional. Don't believe them!" - Yann LeCun, on the conspiracy theories of "X company has reached AGI in secret"
This is the reason there are only a few AI labs, and they show little of the theoretical and scientific understanding you believe is required. Go check their code, there's nothing there. Even the transformer with it's heads and other architectural elements turns out to not do anything and it is less efficient than RNNs. (see https://github.com/BlinkDL/RWKV-LM)
-
The Secret Sauce behind 100K context window in LLMs: all tricks in one place
I've been pondering the same thing, as simply extending the context window in a straightforward manner would lead to a significant increase in computational resources. I've had the opportunity to experiment with Anthropics' 100k model, and it's evident that they're employing some clever techniques to make it work, albeit with some imperfections. One interesting observation is that their prompt guide recommends placing instructions after the reference text when inputting lengthy text bodies. I noticed that the model often disregarded the instructions if placed beforehand. It's clear that the model doesn't allocate the same level of "attention" to all parts of the input across the entire context window.
Moreover, the inability to cache transformers makes the use of large context windows quite costly, as all previous messages must be sent with each call. In this context, the RWKV-LM project on GitHub (https://github.com/BlinkDL/RWKV-LM) might offer a solution. They claim to achieve performance comparable to transformers using an RNN, which could potentially handle a 100-page document and cache it, thereby eliminating the need to process the entire document with each subsequent query. However, I suspect RWKV might fall short in handling complex tasks that require maintaining multiple variables in memory, such as mathematical computations, but it should suffice for many scenarios.
On a related note, I believe Anthropics' Claude is somewhat underappreciated. In some instances, it outperforms GPT4, and I'd rank it somewhere between GPT4 and Bard overall.
-
Meta's plan to offer free commercial AI models puts pressure on Google, OpenAI
> The only reason open-source LLMs have a heartbeat is they’re standing on Meta’s weights.
Not necessarily.
RWKV, for example, is a different architecture that wasn't based on Facebook's weights whatsoever. I don't know where BlinkDL (the author) got the training data, but they seem to have done everything mostly independently otherwise.
https://github.com/BlinkDL/RWKV-LM
disclaimer: I've been doing a lot of work lately on an implementation of CPU inference for this model, so I'm obviously somewhat biased since this is the model I have the most experience in.
-
Eliezer Yudkowsky - open letter on AI
I think the main concern is that, due to the resources put into LLM research for finding new ways to refine and improve them, that work can then be used by projects that do go the extra mile and create things that are more than just LLMs. For example, RWKV is similar to an LLM but will actually change its own model after every processed token, thus letting it remember things longer-term without the use of 'context tokens'.
What are some alternatives?
xformers - Hackable and optimized Transformers building blocks, supporting a composable construction.
llama - Inference code for Llama models
TensorRT - NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
alpaca-lora - Instruct-tune LLaMA on consumer hardware
DeepSpeed - DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
koboldcpp - Run GGUF models easily with a KoboldAI UI. One File. Zero Install.
memory-efficient-attention-pytorch - Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"
gpt4all - GPT4All: Run Local LLMs on Any Device. Open-source and available for commercial use.
alpaca_lora_4bit
nanoGPT - The simplest, fastest repository for training/finetuning medium-sized GPTs.
XMem - [ECCV 2022] XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model
RWKV-CUDA - The CUDA version of the RWKV language model ( https://github.com/BlinkDL/RWKV-LM )