finetuner
similarity
finetuner | similarity | |
---|---|---|
36 | 7 | |
1,463 | 1,007 | |
0.6% | 0.1% | |
5.5 | 5.9 | |
6 months ago | 4 months ago | |
Python | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
finetuner
-
How do you think search will change with technology like ChatGPT, Bing’s new AI search engine and the upcoming Google Bard?
And all of that has something to do with finetuners. It basically fine-tunes AI models for specific use cases. With it can create a custom search experience that is tailored to their specific needs. I also wonder how this is going to be integrated into SEO tools soon since those tools are catered to traditional search engines.
-
Combining multiple lists into one, meaningfully
Combining multiple lists into one is tough, but it's doable if you have the right approach. Fine-tuning GPT-3 might help, but finding enough examples is tough. You could use existing text data or manually label a set of training examples. A finetuner could be help too. It's a platform-agnostic toolkit that can fine-tune pre-trained models and it's customizable to do lots of tasks.
-
speech_recognition not able to convert the full live audio to text. Please help me to fine-tune it.
You can adjust the pause threshold a little longer for pauses between and phrases. You can also use the phrase detection mode, which sets a time limit for the entire phrase instead of ending the transcription prematurely. If your microphone sensitivity is low, you can also try adjusting the energy threshold. If you want, you can use finetuners.
-
Questions about fine-tuned results. Should the completion results be identical to fine-tune examples?
It's possible that completion results may be identical to fine-tuned examples, but not guaranteed. Even with the same prompt, slight variations in output are expected due to the nature of probabilistic language models. You can experiment with different settings and parameters, including those with finetuners like these.
-
How can I create a dataset to refine Whisper AI from old videos with subtitles?
You can try creating your own dataset. Get some audio data that you want, preprocess it, and then create a custom dataset you can use to fine tune. You could use finetuners like these if you want as well.
-
A Guide to Using OpenTelemetry in Jina for Monitoring and Tracing Applications
We derived the dataset by pre-processing the deepfashion dataset using Finetuner. The image label generated by Finetuner is extracted and formatted to produce the text attribute of each product.
-
[D] Looking for an open source Downloadable model to run on my local device.
You can either use Hugging Face Transformers as they have a lot of pre-trained models that you can customize. Or Finetuners like this one: which is a toolkit for fine-tuning multiple models.
-
Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models
Very recently, a few non-English and multilingual CLIP models have appeared, using various sources of training data. In this article, we’ll evaluate a multilingual CLIP model’s performance in a language other than English, and show how you can improve it even further using Jina AI’s Finetuner.
-
Is there a way I can feed the gpt3 model database object like tables? I know we can create fine tune model but not sure about the completion part. Please help!
I think you can convert your data into text and fine-tune the model on it. But that might not be the ideal way to go since you kind of base that on the model. Try transfer learning or finetuning with a finetuner.
-
Classification using prompt or fine tuning?
you can try prompt-based classification or fine-tuning with a Finetuner. Prompts work well for simple tasks but fine-tuning may give better results for complex ones. Althouigh it's going to need more resources, but try both and see what works best for you.
similarity
-
New free tool that uses fine-tuned BERT model to surface answers from research papers
Tensorflow Ranking and Tensorflow similarity (maybe relevant/irrelevant contrastive learning?) look like they could be useful.
-
Non-Machine Learning Image Matching with a Vector DB
There is the metric learning problem to learn a hash for similarity https://github.com/tensorflow/similarity
That said, I don't see many good models available for download on tfhub or huggingface optimized for it, but you can always programmatically modify your images (if you truly mean identical to humans) - change white balance, crop, rotate, select adjacent frames from videos, etc. and optimize a network that is small enough for you to be satisfied and see if that works, as a possible alternative.
-
Face Detection for 520 People
Metric learning has great implementations inside Tensorflow Similarity library: https://github.com/tensorflow/similarity Although the documentation is quite bad, but the jupyter notebooks are great.
-
[P] TensorFlow Similarity 0.16 is out
Just a quick note that TensorFlow Similarity 0.16 is out -- this release beside adding the XMB loss is mostly focus on refactoring and optimizing the core components to ensure everything works smoothly and accurately. Details are in the changelog as usual and a simple pip install -U tensorflow_similarity should just work.
- Self-supervised learning added to TensorFlow Similarity
-
[P] TensorFlow Similarity now self-supervised training
Very happy to announce that as part of the 0.15 release, TensorFlow Similarity now support self-supervised learning using STOA algorithms. To help you get started we included in the release a detailed getting started notebook that you can run in Colab. This notebook shows you how to use SimSiam self-supervised pre-training to almost double the accuracy compared to a model trained from scratch on CIFAR 10.
-
TensorFlow Introduces ‘TensorFlow Similarity’, An Easy And Fast Python Package To Train Similarity Models Using TensorFlow
Github: https://github.com/tensorflow/similarity
What are some alternatives?
gpt_index - LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. [Moved to: https://github.com/jerryjliu/llama_index]
pytorch-metric-learning - The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
Jina AI examples - Jina examples and demos to help you get started
pgANN - Fast Approximate Nearest Neighbor (ANN) searches with a PostgreSQL database.
RWKV-LM - RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.
ContraD - Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)
jina - ☁️ Build multimodal AI applications with cloud-native stack
quaterion - Blazing fast framework for fine-tuning similarity learning models
Promptify - Prompt Engineering | Prompt Versioning | Use GPT or other prompt based models to get structured output. Join our discord for Prompt-Engineering, LLMs and other latest research
ColBERT - ColBERT: state-of-the-art neural search (SIGIR'20, TACL'21, NeurIPS'21, NAACL'22, CIKM'22, ACL'23, EMNLP'23)
pysot - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.
sparse_dot_topn - Python package to accelerate the sparse matrix multiplication and top-n similarity selection