finetuner
jina
finetuner | jina | |
---|---|---|
36 | 126 | |
1,466 | 20,978 | |
- | 0.6% | |
5.5 | 8.7 | |
7 months ago | 8 days ago | |
Python | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
finetuner
-
How do you think search will change with technology like ChatGPT, Bing’s new AI search engine and the upcoming Google Bard?
And all of that has something to do with finetuners. It basically fine-tunes AI models for specific use cases. With it can create a custom search experience that is tailored to their specific needs. I also wonder how this is going to be integrated into SEO tools soon since those tools are catered to traditional search engines.
-
Combining multiple lists into one, meaningfully
Combining multiple lists into one is tough, but it's doable if you have the right approach. Fine-tuning GPT-3 might help, but finding enough examples is tough. You could use existing text data or manually label a set of training examples. A finetuner could be help too. It's a platform-agnostic toolkit that can fine-tune pre-trained models and it's customizable to do lots of tasks.
-
speech_recognition not able to convert the full live audio to text. Please help me to fine-tune it.
You can adjust the pause threshold a little longer for pauses between and phrases. You can also use the phrase detection mode, which sets a time limit for the entire phrase instead of ending the transcription prematurely. If your microphone sensitivity is low, you can also try adjusting the energy threshold. If you want, you can use finetuners.
-
Questions about fine-tuned results. Should the completion results be identical to fine-tune examples?
It's possible that completion results may be identical to fine-tuned examples, but not guaranteed. Even with the same prompt, slight variations in output are expected due to the nature of probabilistic language models. You can experiment with different settings and parameters, including those with finetuners like these.
-
How can I create a dataset to refine Whisper AI from old videos with subtitles?
You can try creating your own dataset. Get some audio data that you want, preprocess it, and then create a custom dataset you can use to fine tune. You could use finetuners like these if you want as well.
-
A Guide to Using OpenTelemetry in Jina for Monitoring and Tracing Applications
We derived the dataset by pre-processing the deepfashion dataset using Finetuner. The image label generated by Finetuner is extracted and formatted to produce the text attribute of each product.
-
[D] Looking for an open source Downloadable model to run on my local device.
You can either use Hugging Face Transformers as they have a lot of pre-trained models that you can customize. Or Finetuners like this one: which is a toolkit for fine-tuning multiple models.
-
Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models
Very recently, a few non-English and multilingual CLIP models have appeared, using various sources of training data. In this article, we’ll evaluate a multilingual CLIP model’s performance in a language other than English, and show how you can improve it even further using Jina AI’s Finetuner.
-
Is there a way I can feed the gpt3 model database object like tables? I know we can create fine tune model but not sure about the completion part. Please help!
I think you can convert your data into text and fine-tune the model on it. But that might not be the ideal way to go since you kind of base that on the model. Try transfer learning or finetuning with a finetuner.
-
Classification using prompt or fine tuning?
you can try prompt-based classification or fine-tuning with a Finetuner. Prompts work well for simple tasks but fine-tuning may give better results for complex ones. Althouigh it's going to need more resources, but try both and see what works best for you.
jina
- Jina.ai: Self-host Multimodal models
- FLaNK Stack Weekly for 30 Oct 2023
-
Cross data type search that wasn’t supported well using Elasticsearch
Jina mainly because of their use of neural networks and AI.
- Recommend a Lightweight Launcher with Nested Folders
-
I plan to build my own AI powered search engine for my portfolio. Do you know ones that are open-source?
Jina - It’s an open-source project where you can build search engines. Well maybe not no code but it claims that you only need a few lines of code for creating projects. The project supports semantic, text, image, audio, and video search. What I’m also interested in is with their neural search and generative AI. I’m also interested in the amount of github repo that they have. I have this on my radar since this is also something I was interested in.
-
How can we match images in our database?
Do you guys have any ideas how we can match images on our database? We’re working on a project that about matching images on our database. We were trying to use SIFT and some other similar methods, but for some reason, nothing doesn’t seem to be working that well. Does anyone have any suggestions for the most effective way to do this? Maybe some open-source solutions like HuggingFace or Jina AI? We just want to make sure our image matching is correct and that part’s been a bit of a struggle on our part.
-
Can AI 3D model search engines be a thing this year?
The tech lets you find 3D models without sifting through tons of text - An information retrieval framework does the heavy lifting and compares models to each other, no descriptions or keywords needed.
-
Any MLOps platform you use?
Jina AI -They offer a neural search solution that can help build smarter, more efficient search engines. They also have a list of cool github repos that you can check out. Similar to Vertex AI, they have image classification tools, NLPs, fine tuners etc.
-
This week(s) in DocArray
Well, it's not exactly a new feature, but we've been working on early support for DocArray v2 in Jina.
-
Multi-model serving options
Jina let’s you serve all of your models through the same Gateway while deploying them as individual microservices. You can also tie your models together in a pipeline if needed. Also some nice ML focussed features such as dynamic batching.
What are some alternatives?
gpt_index - LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. [Moved to: https://github.com/jerryjliu/llama_index]
Weaviate - Weaviate is an open-source vector database that stores both objects and vectors, allowing for the combination of vector search with structured filtering with the fault tolerance and scalability of a cloud-native database.
Jina AI examples - Jina examples and demos to help you get started
haystack - :mag: AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots.
RWKV-LM - RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.
dalle-flow - 🌊 A Human-in-the-Loop workflow for creating HD images from text
Promptify - Prompt Engineering | Prompt Versioning | Use GPT or other prompt based models to get structured output. Join our discord for Prompt-Engineering, LLMs and other latest research
whoogle-search - A self-hosted, ad-free, privacy-respecting metasearch engine
pysot - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.
es-clip-image-search - Sample implementation of natural language image search with OpenAI's CLIP and Elasticsearch or Opensearch.
similarity - TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
searxng - SearXNG is a free internet metasearch engine which aggregates results from various search services and databases. Users are neither tracked nor profiled.