bodywork
gensim
bodywork | gensim | |
---|---|---|
8 | 18 | |
430 | 15,603 | |
- | 0.4% | |
0.0 | 6.9 | |
about 1 year ago | about 1 month ago | |
Python | Python | |
GNU Affero General Public License v3.0 | GNU Lesser General Public License v3.0 only |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
bodywork
- Deployment automation for ML projects of all shapes and sizes
-
A tutorial on how to handle prediction uncertainty in production systems, by using Bayesian inference and probabilistic programs
how to deploy it to Kuberentes using Bodywork.
-
[P] [D] How are you approaching prediction uncertainty in ML systems?
I usually turn to generative models - e.g. probabilistic programs and Bayesian inference. I’ve written-up my thoughts on how to engineer these into a ‘production system’ deployed to Kubernetes, using PyMC and Bodywork (an open-source ML deployment tool that I contribute to).
- Bodywork: MLOps tool for deploying ML projects to Kubernetes
-
Tool for mapping executable Python modules to Kubernetes deployments
I’m one of the core contributors to Bodywork, an open-source tool for deploying machine learning projects developed in Python, to Kubernetes.
-
[P] [D] The benefits of training the simplest model you can think of and deploying it to production, as soon as you can.
I’ve had many successes with this approach. With this in mind, I’ve put together an example of how to make this Agile approach to developing machine learning systems a reality, by demonstrating that it takes under 15 minutes to deploy a Scikit-Learn model, using FastAPI with Bodywork (an open-source MLOps tool that I have built).
- bodywork - MLOps for Python and K8S
- bodywork-ml/bodywork-core - MLOps automation for Python and Kubernetes
gensim
- Aggregating news from different sources
-
Understanding How Dynamic node2vec Works on Streaming Data
This is our optimization problem. Now, we hope that you have an idea of what our goal is. Luckily for us, this is already implemented in a Python module called gensim. Yes, these guys are brilliant in natural language processing and we will make use of it. 🤝
-
Topic modeling --- allow multiple topics per statement
Try LDA as implemented in gemsin https://github.com/RaRe-Technologies/gensim
-
Is it home bias or is data wrangling for machine learning in python much less intuitive and much more burdensome than in R?
Standout python NLP libraries include Spacy and Gensim, as well as pre-trained model availability in Hugginface. These libraries have widespread use in and support from industry and it shows. Spacy has best-in-class methods for pre-processing text for further applications. Gensim helps you manage your corpus of documents, and contains a lot of different tools for solving a common industry task, topic modeling.
- sentence transformer vector dimensionality reduction to 1
- Where to start for recommendation systems
-
GET STARTED WITH TOPIC MODELLING USING GENSIM IN NLP
Here we have to install the gensim library in a jupyter notebook to be able to use it in our project, consider the code below;
-
Show HN: I built a site that summarizes articles and PDFs using NLP
Nice work! I wonder if you're going the same challenges that gensim had for being generic in summarization.
For context:
> Despite its general-sounding name, the module will not satisfy the majority of use cases in production and is likely to waste people's time.
https://github.com/RaRe-Technologies/gensim/wiki/Migrating-f...
-
[Research] Text summarization using Python, that can run on Android devices?
TextRank will work without any problems. https://radimrehurek.com/gensim/
-
Topic modelling with Gensim and SpaCy on startup news
For the topic modelling itself, I am going to use Gensim library by Radim Rehurek, which is very developer friendly and easy to use.
What are some alternatives?
NuPIC - Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.
BERTopic - Leveraging BERT and c-TF-IDF to create easily interpretable topics.
PaddlePaddle - PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
scikit-learn - scikit-learn: machine learning in Python
TFLearn - Deep learning library featuring a higher-level API for TensorFlow.
MLflow - Open source platform for the machine learning lifecycle
Crab - Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).
tensorflow - An Open Source Machine Learning Framework for Everyone
PyBrain
Keras - Deep Learning for humans
neptune-contrib - This library is a location of the LegacyLogger for PyTorch Lightning.
flair - A very simple framework for state-of-the-art Natural Language Processing (NLP)