S7
stan
S7 | stan | |
---|---|---|
6 | 44 | |
441 | 2,637 | |
2.9% | 0.2% | |
9.3 | 9.6 | |
4 months ago | 6 days ago | |
R | C++ | |
GNU General Public License v3.0 or later | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
S7
- Will they get it right this time?
-
Tidyverse 2.0.0
https://adv-r.hadley.nz/oo.html
"There are multiple OOP systems to choose from. In this book, I’ll focus on the three that I believe are most important: S3, R6, and S4. S3 and S4 are provided by base R. R6 is provided by the R6 package, and is similar to the Reference Classes, or RC for short, from base R.
"There is disagreement about the relative importance of the OOP systems. I think S3 is most important, followed by R6, then S4. Others believe that S4 is most important, followed by RC, and that S3 should be avoided. This means that different R communities use different systems."
https://rconsortium.github.io/OOP-WG/
"The S7 package is a new OOP system designed to be a successor to S3 and S4."
-
Is python necessary to learn machine learning?
Even if RStudio & the Tidyverse have mostly been promoting a functional programming style in R, it has full support for OOP (see R6 or R7 for more modern implementations of it). Let's not even mention the excellent Stan ecosystem for Probabilistic programming / Bayesian modeling, or Bioconductor, the biggest repository of bioinformatics packages & tools of any language.
-
Why is OOP in R so messy?
Not sure if you or others have missed it, as the link from the readme is dead, but the proposal section of that repo is informative of the current state of things: https://github.com/RConsortium/OOP-WG/blob/master/proposal/proposal.org
stan
- Stan: Statistical modeling and high-performance statistical computation
-
Elevate Your Python Skills: Machine Learning Packages That Transformed My Journey as ML Engineer
Alternatives: stan and edward
- How often do you see Bayesian Statistics or Stan in the DS world? Essential skill or a nice to have?
-
Rstan Package in ATPA
remove.packages(c("StanHeaders", "rstan")) install.packages("rstan", repos = c("https://mc-stan.org/r-packages/", getOption("repos")))
-
[Q] Is there a method for adding random effects to an interval censored time to event model?
My approach to problems like this is to write down the proposed model mathematically first, in extreme detail. I find hierarchical form to be the easiest way to break it down piece by piece. Once I have the maths then I turn it into a Stan model. Last step is to use the Stan output to answer the research questions.
-
HELP Conjugate Priors in Bayesian Regression in SPSS
Here is a good breakdown of recommendations from Andrew Gelman.
-
Demand Planning
For instance my first choice in these cases is always a Bayesian inference tool like Stan. In my experience as someone who’s more of a programmer than mathematician/statistician, Bayesian tools like this make it much easier to not accidentally fool yourself with assumptions, and they can be pretty good at catching statistical mistakes.
-
What do actual ML engineers think of ChatGPT?
I tend to be most impressed by tools and libraries. The stuff that has most impressed me in my time in ML is stuff like pytorch and Stan, tools that allow expression of a wide variety of statistical (and ML, DL models, if you believe there's a distinction) models and inference from those models. These are the things that have had the largest effect in my own work, not in the sense of just using these tools, but learning from their design and emulating what makes them successful.
- ChatGPT4 writes Stan code so I don’t have to
-
How to get started learning modern AI?
oh its certainly used in practice. you should look into frameworks like Stan[1] and pyro[2]. i think bayesian models are seen as more explainable so they will be used in industries that value that sort of thing
[1] https://mc-stan.org/
What are some alternatives?
py-shiny - Shiny for Python
rnim - A bridge between R and Nim
AlgebraOfGraphics.jl - An algebraic spin on grammar-of-graphics data visualization in Julia. Powered by the Makie.jl plotting ecosystem.
PyMC - Bayesian Modeling and Probabilistic Programming in Python
dtplyr - Data table backend for dplyr
rstan - RStan, the R interface to Stan