quinn
fugue
Our great sponsors
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
quinn
-
Invitation to collaborate on open source PySpark projects
quinn is a library with PySpark helper functions. I need to work through all the open issues / PRs and bump all versions. I should do another release. This library gets around 600,000 monthly downloads.
-
Pyspark now provides a native Pandas API
Pandas syntax is far inferior to regular PySpark in my opinion. Goes to show how much data analysts value a syntax that they're already familiar with. Pandas syntax makes it harder to reason about queries, abstract DataFrame transformations, etc. I've authored some popular PySpark libraries like quinn and chispa and am not excited to add Pandas syntax support, haha.
-
Is Spark - The Defenitive Guide outdated?
They spent a lot of effort improving the catalyst engine under the hood too and making it easier to extend and improve it in the future. Making it easy to add your own native code to Spark itself. Shameless plug of a blog post I wrote on this subject which basically reiterates what Matthew Powers, author of Spark Daria and quinn, wrote here.
-
Ask HN: What are some tools / libraries you built yourself?
I built daria (https://github.com/MrPowers/spark-daria) to make it easier to write Spark and spark-fast-tests (https://github.com/MrPowers/spark-fast-tests) to provide a good testing workflow.
quinn (https://github.com/MrPowers/quinn) and chispa (https://github.com/MrPowers/chispa) are the PySpark equivalents.
Built bebe (https://github.com/MrPowers/bebe) to expose the Spark Catalyst expressions that aren't exposed to the Scala / Python APIs.
Also build spark-sbt.g8 to create a Spark project with a single command: https://github.com/MrPowers/spark-sbt.g8
-
Open source contributions for a Data Engineer?
I've built popular PySpark (quinn, chispa) and Scala Spark (spark-daria, spark-fast-tests) libraries.
fugue
-
Replacing Pandas with Polars. A Practical Guide
Fugue is an interesting library in this space , though I haven’t tried it
https://github.com/fugue-project/fugue
A unified interface for distributed computing. Fugue executes SQL, Python, and Pandas code on Spark, Dask and Ray without any rewrites.
-
The hand-picked selection of the best Python libraries and tools of 2022
fugue — distributed computing done easy
-
[P] Open data transformations in Python, no SQL required
This looks similar to fugue, am I right? How do they compare?
-
Pyspark now provides a native Pandas API
There's dask-sql, but I think it is being abandoned for fugue-project. I'm actually excited for this project as it is trying to provide a backend agnostic solution, which would seem like a difficult, lofty goal. I wish them luck.
What are some alternatives?
modin - Modin: Scale your Pandas workflows by changing a single line of code
spark-daria - Essential Spark extensions and helper methods ✨😲
chispa - PySpark test helper methods with beautiful error messages
data-science-ipython-notebooks - Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
spark-rapids - Spark RAPIDS plugin - accelerate Apache Spark with GPUs
Optimus - :truck: Agile Data Preparation Workflows made easy with Pandas, Dask, cuDF, Dask-cuDF, Vaex and PySpark
mlToolKits - learningOrchestra is a distributed Machine Learning integration tool that facilitates and streamlines iterative processes in a Data Science project.
bytehub - ByteHub: making feature stores simple
ormolu - A formatter for Haskell source code
null - Nullable Go types that can be marshalled/unmarshalled to/from JSON.
xarray - N-D labeled arrays and datasets in Python