LibTIFF.jl
Torch.jl
LibTIFF.jl | Torch.jl | |
---|---|---|
1 | 6 | |
0 | 228 | |
- | 1.3% | |
6.5 | 5.2 | |
over 1 year ago | 2 months ago | |
Julia | Julia | |
MIT License | GNU General Public License v3.0 or later |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
LibTIFF.jl
-
Julia 1.10 Released
Are there solid C interfaces that can be used?
A large part of why I started using Julia is because calling into other languages through the C FFI is pretty easy and efficient. Most of the wrappers are a single line. If there is not existing driver support, I would pass the C headers through Clang.jl, which automatically wraps the C API in a C header.
https://github.com/JuliaInterop/Clang.jl
I most recently did this with libtiff. Here is the Clang.jl code to generate the bindings. It's less than 30 lines of sterotypical code.
https://github.com/mkitti/LibTIFF.jl/tree/main/gen
The generated bindings with a few tweaks is here:
https://github.com/mkitti/LibTIFF.jl/blob/main/src/LibTIFF.j...
Torch.jl
- Julia 1.10 Released
- Julia 1.9: A New Era of Performance and Flexibility
- How usable is Julia for Natural Language Processing Machine learning?
-
Does Julia Have a Chance to Overthrown Python in the Machine Learning Industry?
For frontends Python has quite some head-start. In principle it would be possible to write Julia frond-ends to existing ML libraries (written e.g. in C), for example https://github.com/FluxML/Torch.jl , but the advantages over Python frontends would be very limited. Only a front-to-back Julia implementation leverages most of the language advantages like composibility and flexibility.
-
Julia: faster than Fortran, cleaner than Numpy
PyTorch for example is a C++ library with a Python user interface, see e.g. the language shares in GitHub (https://github.com/pytorch/pytorch ). There is also a Julia binding for Torch (https://github.com/FluxML/Torch.jl), but I do not know how up-to-date it is.
What are some alternatives?
threads - Threads for Lua and LuaJIT. Transparent exchange of data between threads is allowed thanks to torch serialization.
Flux.jl - Relax! Flux is the ML library that doesn't make you tensor
Clang.jl - C binding generator and Julia interface to libclang
PyCallChainRules.jl - Differentiate python calls from Julia