Distributions.jl VS julia

Compare Distributions.jl vs julia and see what are their differences.

Our great sponsors
  • InfluxDB - Power Real-Time Data Analytics at Scale
  • WorkOS - The modern identity platform for B2B SaaS
  • SaaSHub - Software Alternatives and Reviews
Distributions.jl julia
6 350
1,070 44,510
0.9% 0.8%
7.6 10.0
4 days ago about 11 hours ago
Julia Julia
GNU General Public License v3.0 or later MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

Distributions.jl

Posts with mentions or reviews of Distributions.jl. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-02-22.
  • Yann Lecun: ML would have advanced if other lang had been adopted versus Python
    9 projects | news.ycombinator.com | 22 Feb 2023
    If you look at Julia open source projects you'll see that the projects tend to have a lot more contributors than the Python counterparts, even over smaller time periods. A package for defining statistical distributions has had 202 contributors (https://github.com/JuliaStats/Distributions.jl), etc. Julia Base even has had over 1,300 contributors (https://github.com/JuliaLang/julia) which is quite a lot for a core language, and that's mostly because the majority of the core is in Julia itself.

    This is one of the things that was noted quite a bit at this SIAM CSE conference, that Julia development tends to have a lot more code reuse than other ecosystems like Python. For example, the various machine learning libraries like Flux.jl and Lux.jl share a lot of layer intrinsics in NNlib.jl (https://github.com/FluxML/NNlib.jl), the same GPU libraries (https://github.com/JuliaGPU/CUDA.jl), the same automatic differentiation library (https://github.com/FluxML/Zygote.jl), and of course the same JIT compiler (Julia itself). These two libraries are far enough apart that people say "Flux is to PyTorch as Lux is to JAX/flax", but while in the Python world those share almost 0 code or implementation, in the Julia world they share >90% of the core internals but have different higher levels APIs.

    If one hasn't participated in this space it's a bit hard to fathom how much code reuse goes on and how that is influenced by the design of multiple dispatch. This is one of the reasons there is so much cohesion in the community since it doesn't matter if one person is an ecologist and the other is a financial engineer, you may both be contributing to the same library like Distances.jl just adding a distance function which is then used in thousands of places. With the Python ecosystem you tend to have a lot more "megapackages", PyTorch, SciPy, etc. where the barrier to entry is generally a lot higher (and sometimes requires handling the build systems, fun times). But in the Julia ecosystem you have a lot of core development happening in "small" but central libraries, like Distances.jl or Distributions.jl, which are simple enough for an undergrad to get productive in a week but is then used everywhere (Distributions.jl for example is used in every statistics package, and definitions of prior distributions for Turing.jl's probabilistic programming language, etc.).

  • Don't waste your time on Julia
    2 projects | /r/rstats | 14 Aug 2022
    ...so the blog post you've posted 4 times contains a list of issues the author filed in 2020-2021... and at least for the handful I clicked, they indeed have (long) been sorted. e.g., Filed Dec 18th 2020, closed Dec 20th
  • Julia ranks in the top most loved programming languages for 2022
    3 projects | news.ycombinator.com | 23 Jun 2022
    Well, out of the issues mentioned, the ones still open can be categorized as (1) aliasing problems with mutable vectors https://github.com/JuliaLang/julia/issues/39385 https://github.com/JuliaLang/julia/issues/39460 (2) not handling OffsetArrays correctly https://github.com/JuliaStats/StatsBase.jl/issues/646, https://github.com/JuliaStats/StatsBase.jl/issues/638, https://github.com/JuliaStats/Distributions.jl/issues/1265 https://github.com/JuliaStats/StatsBase.jl/issues/643 (3) bad interaction of buffering and I/O redirection https://github.com/JuliaLang/julia/issues/36069 (4) a type dispatch bug https://github.com/JuliaLang/julia/issues/41096

    So if you avoid mutable vectors and OffsetArrays you should generally be fine.

    As far as the argument "Julia is really buggy so it's unusable", I think this can be made for any language - e.g. rand is not random enough, Java's binary search algorithm had an overflow, etc. The fixed issues have tests added so they won't happen again. Maybe copying the test suites from libraries in other languages would have caught these issues earlier, but a new system will have more bugs than a mature system so some amount of bugginess is unavoidable.

  • The Julia language has a number of correctness flaws
    19 projects | news.ycombinator.com | 16 May 2022
  • Does a Julia package have to live in a separate file?
    1 project | /r/Julia | 16 Mar 2021
    See the Distributions.jl package for an example .jl file structure: https://github.com/JuliaStats/Distributions.jl/tree/master/src
  • Organizing a Julia program
    1 project | /r/Julia | 17 Jan 2021
    Structure your program around your domain specific constrains, e.g if you look at Distributions.jl they have folders for univariate/multivariate or discrete/continuous with a file per distribution containing the struct + all its methods :

julia

Posts with mentions or reviews of julia. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-06.
  • Top Paying Programming Technologies 2024
    19 projects | dev.to | 6 Mar 2024
    34. Julia - $74,963
  • Optimize sgemm on RISC-V platform
    6 projects | news.ycombinator.com | 28 Feb 2024
    I don't believe there is any official documentation on this, but https://github.com/JuliaLang/julia/pull/49430 for example added prefetching to the marking phase of a GC which saw speedups on x86, but not on M1.
  • Dart 3.3
    2 projects | news.ycombinator.com | 15 Feb 2024
    3. dispatch on all the arguments

    the first solution is clean, but people really like dispatch.

    the second makes calling functions in the function call syntax weird, because the first argument is privileged semantically but not syntactically.

    the third makes calling functions in the method call syntax weird because the first argument is privileged syntactically but not semantically.

    the closest things to this i can think of off the top of my head in remotely popular programming languages are: nim, lisp dialects, and julia.

    nim navigates the dispatch conundrum by providing different ways to define free functions for different dispatch-ness. the tutorial gives a good overview: https://nim-lang.org/docs/tut2.html

    lisps of course lack UFCS.

    see here for a discussion on the lack of UFCS in julia: https://github.com/JuliaLang/julia/issues/31779

    so to sum up the answer to the original question: because it's only obvious how to make it nice and tidy like you're wanting if you sacrifice function dispatch, which is ubiquitous for good reason!

  • Julia 1.10 Highlights
    1 project | news.ycombinator.com | 27 Dec 2023
    https://github.com/JuliaLang/julia/blob/release-1.10/NEWS.md
  • Best Programming languages for Data Analysis📊
    4 projects | dev.to | 7 Dec 2023
    Visit official site: https://julialang.org/
  • Potential of the Julia programming language for high energy physics computing
    10 projects | news.ycombinator.com | 4 Dec 2023
    No. It runs natively on ARM.

    julia> versioninfo() Julia Version 1.9.3 Commit bed2cd540a1 (2023-08-24 14:43 UTC) Build Info: Official https://julialang.org/ release

  • Rust std:fs slower than Python
    7 projects | news.ycombinator.com | 29 Nov 2023
    https://github.com/JuliaLang/julia/issues/51086#issuecomment...

    So while this "fixes" the issue, it'll introduce a confusing time delay between you freeing the memory and you observing that in `htop`.

    But according to https://jemalloc.net/jemalloc.3.html you can set `opt.muzzy_decay_ms = 0` to remove the delay.

    Still, the musl author has some reservations against making `jemalloc` the default:

    https://www.openwall.com/lists/musl/2018/04/23/2

    > It's got serious bloat problems, problems with undermining ASLR, and is optimized pretty much only for being as fast as possible without caring how much memory you use.

    With the above-mentioned tunables, this should be mitigated to some extent, but the general "theme" (focusing on e.g. performance vs memory usage) will likely still mean "it's a tradeoff" or "it's no tradeoff, but only if you set tunables to what you need".

  • Eleven strategies for making reproducible research the norm
    1 project | news.ycombinator.com | 25 Nov 2023
    I have asked about Julia's reproducibility story on the Guix mailing list in the past, and at the time Simon Tournier didn't think it was promising. I seem to recall Julia itself didnt have a reproducible build. All I know now is that github issue is still not closed.

    https://github.com/JuliaLang/julia/issues/34753

  • Julia as a unifying end-to-end workflow language on the Frontier exascale system
    5 projects | news.ycombinator.com | 19 Nov 2023
    I don't really know what kind of rebuttal you're looking for, but I will link my HN comments from when this was first posted for some thoughts: https://news.ycombinator.com/item?id=31396861#31398796. As I said, in the linked post, I'm quite skeptical of the business of trying to assess relative buginess of programming in different systems, because that has strong dependencies on what you consider core vs packages and what exactly you're trying to do.

    However, bugs in general suck and we've been thinking a fair bit about what additional tooling the language could provide to help people avoid the classes of bugs that Yuri encountered in the post.

    The biggest class of problems in the blog post, is that it's pretty clear that `@inbounds` (and I will extend this to `@assume_effects`, even though that wasn't around when Yuri wrote his post) is problematic, because it's too hard to write. My proposal for what to do instead is at https://github.com/JuliaLang/julia/pull/50641.

    Another common theme is that while Julia is great at composition, it's not clear what's expected to work and what isn't, because the interfaces are informal and not checked. This is a hard design problem, because it's quite close to the reasons why Julia works well. My current thoughts on that are here: https://github.com/Keno/InterfaceSpecs.jl but there's other proposals also.

  • Getaddrinfo() on glibc calls getenv(), oh boy
    10 projects | news.ycombinator.com | 16 Oct 2023
    Doesn't musl have the same issue? https://github.com/JuliaLang/julia/issues/34726#issuecomment...

    I also wonder about OSX's libc. Newer versions seem to have some sort of locking https://github.com/apple-open-source-mirror/Libc/blob/master...

    but older versions (from 10.9) don't have any lockign: https://github.com/apple-oss-distributions/Libc/blob/Libc-99...

What are some alternatives?

When comparing Distributions.jl and julia you can also consider the following projects:

MLJ.jl - A Julia machine learning framework

jax - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

HypothesisTests.jl - Hypothesis tests for Julia

NetworkX - Network Analysis in Python

Optimization.jl - Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable interface.

Lua - Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural programming, object-oriented programming, functional programming, data-driven programming, and data description.

StatsBase.jl - Basic statistics for Julia

rust-numpy - PyO3-based Rust bindings of the NumPy C-API

Lux.jl - Explicitly Parameterized Neural Networks in Julia

Numba - NumPy aware dynamic Python compiler using LLVM

StaticLint.jl - Static Code Analysis for Julia

F# - Please file issues or pull requests here: https://github.com/dotnet/fsharp