Distributions.jl VS Optimization.jl

Compare Distributions.jl vs Optimization.jl and see what are their differences.

Distributions.jl

A Julia package for probability distributions and associated functions. (by JuliaStats)

Optimization.jl

Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable interface. (by SciML)
Our great sponsors
  • InfluxDB - Power Real-Time Data Analytics at Scale
  • WorkOS - The modern identity platform for B2B SaaS
  • SaaSHub - Software Alternatives and Reviews
Distributions.jl Optimization.jl
6 3
1,070 658
0.9% 3.3%
7.6 9.6
4 days ago 4 days ago
Julia Julia
GNU General Public License v3.0 or later MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

Distributions.jl

Posts with mentions or reviews of Distributions.jl. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-02-22.
  • Yann Lecun: ML would have advanced if other lang had been adopted versus Python
    9 projects | news.ycombinator.com | 22 Feb 2023
    If you look at Julia open source projects you'll see that the projects tend to have a lot more contributors than the Python counterparts, even over smaller time periods. A package for defining statistical distributions has had 202 contributors (https://github.com/JuliaStats/Distributions.jl), etc. Julia Base even has had over 1,300 contributors (https://github.com/JuliaLang/julia) which is quite a lot for a core language, and that's mostly because the majority of the core is in Julia itself.

    This is one of the things that was noted quite a bit at this SIAM CSE conference, that Julia development tends to have a lot more code reuse than other ecosystems like Python. For example, the various machine learning libraries like Flux.jl and Lux.jl share a lot of layer intrinsics in NNlib.jl (https://github.com/FluxML/NNlib.jl), the same GPU libraries (https://github.com/JuliaGPU/CUDA.jl), the same automatic differentiation library (https://github.com/FluxML/Zygote.jl), and of course the same JIT compiler (Julia itself). These two libraries are far enough apart that people say "Flux is to PyTorch as Lux is to JAX/flax", but while in the Python world those share almost 0 code or implementation, in the Julia world they share >90% of the core internals but have different higher levels APIs.

    If one hasn't participated in this space it's a bit hard to fathom how much code reuse goes on and how that is influenced by the design of multiple dispatch. This is one of the reasons there is so much cohesion in the community since it doesn't matter if one person is an ecologist and the other is a financial engineer, you may both be contributing to the same library like Distances.jl just adding a distance function which is then used in thousands of places. With the Python ecosystem you tend to have a lot more "megapackages", PyTorch, SciPy, etc. where the barrier to entry is generally a lot higher (and sometimes requires handling the build systems, fun times). But in the Julia ecosystem you have a lot of core development happening in "small" but central libraries, like Distances.jl or Distributions.jl, which are simple enough for an undergrad to get productive in a week but is then used everywhere (Distributions.jl for example is used in every statistics package, and definitions of prior distributions for Turing.jl's probabilistic programming language, etc.).

  • Don't waste your time on Julia
    2 projects | /r/rstats | 14 Aug 2022
    ...so the blog post you've posted 4 times contains a list of issues the author filed in 2020-2021... and at least for the handful I clicked, they indeed have (long) been sorted. e.g., Filed Dec 18th 2020, closed Dec 20th
  • Julia ranks in the top most loved programming languages for 2022
    3 projects | news.ycombinator.com | 23 Jun 2022
    Well, out of the issues mentioned, the ones still open can be categorized as (1) aliasing problems with mutable vectors https://github.com/JuliaLang/julia/issues/39385 https://github.com/JuliaLang/julia/issues/39460 (2) not handling OffsetArrays correctly https://github.com/JuliaStats/StatsBase.jl/issues/646, https://github.com/JuliaStats/StatsBase.jl/issues/638, https://github.com/JuliaStats/Distributions.jl/issues/1265 https://github.com/JuliaStats/StatsBase.jl/issues/643 (3) bad interaction of buffering and I/O redirection https://github.com/JuliaLang/julia/issues/36069 (4) a type dispatch bug https://github.com/JuliaLang/julia/issues/41096

    So if you avoid mutable vectors and OffsetArrays you should generally be fine.

    As far as the argument "Julia is really buggy so it's unusable", I think this can be made for any language - e.g. rand is not random enough, Java's binary search algorithm had an overflow, etc. The fixed issues have tests added so they won't happen again. Maybe copying the test suites from libraries in other languages would have caught these issues earlier, but a new system will have more bugs than a mature system so some amount of bugginess is unavoidable.

  • The Julia language has a number of correctness flaws
    19 projects | news.ycombinator.com | 16 May 2022
  • Does a Julia package have to live in a separate file?
    1 project | /r/Julia | 16 Mar 2021
    See the Distributions.jl package for an example .jl file structure: https://github.com/JuliaStats/Distributions.jl/tree/master/src
  • Organizing a Julia program
    1 project | /r/Julia | 17 Jan 2021
    Structure your program around your domain specific constrains, e.g if you look at Distributions.jl they have folders for univariate/multivariate or discrete/continuous with a file per distribution containing the struct + all its methods :

Optimization.jl

Posts with mentions or reviews of Optimization.jl. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-05-18.
  • SciPy: Interested in adopting PRIMA, but little appetite for more Fortran code
    8 projects | news.ycombinator.com | 18 May 2023
    Interesting response. I develop the Julia SciML organization https://sciml.ai/ and we'd be more than happy to work with you to get wrappers for PRIMA into Optimization.jl's general interface (https://docs.sciml.ai/Optimization/stable/). Please get in touch and we can figure out how to set this all up. I personally would be curious to try this out and do some benchmarks against nlopt methods.
  • Help me to choose an optimization framework for my problem
    2 projects | /r/Julia | 11 Mar 2023
    There are also Optimization and Nonconvex , which seem like umbrella packages and I am not sure what methods to use inside these packages. Any help on these?
  • The Julia language has a number of correctness flaws
    19 projects | news.ycombinator.com | 16 May 2022
    > but would you say most packages follow or enforce SemVer?

    The package ecosystem pretty much requires SemVer. If you just say `PackageX = "1"` inside of a Project.toml [compat], then it will assume SemVer, i.e. any version 1.x is non-breaking an thus allowed, but not version 2. Some (but very few) packages do `PackageX = ">=1"`, so you could say Julia doesn't force SemVar (because a package can say that it explicitly believes it's compatible with all future versions), but of course that's nonsense and there will always be some bad actors around. So then:

    > Would enforcing a stricter dependency graph fix some of the foot guns of using packages or would that limit composability of packages too much?

    That's not the issue. As above, the dependency graphs are very strict. The issue is always at the periphery (for any package ecosystem really). In Julia, one thing that can amplify it is the fact that Requires.jl, the hacky conditional dependency system that is very not recommended for many reasons, cannot specify version requirements on conditional dependencies. I find this to be the root cause of most issues in the "flow" of the package development ecosystem. Most packages are okay, but then oh, I don't want to depend on CUDA for this feature, so a little bit of Requires.jl here, and oh let me do a small hack for OffSetArrays. And now these little hacky features on the edge are both less tested and not well versioned.

    Thankfully there's a better way to do it by using multi-package repositories with subpackages. For example, https://github.com/SciML/GalacticOptim.jl is a global interface for lots of different optimization libraries, and you can see all of the different subpackages here https://github.com/SciML/GalacticOptim.jl/tree/master/lib. This lets there be a GalacticOptim and then a GalacticBBO package, each with versioning, but with tests being different while allowing easy co-development of the parts. Very few packages in the Julia ecosystem actually use this (I only know of one other package in Julia making use of this) because the tooling only recently was able to support it, but this is how a lot of packages should be going.

    The upside too is that Requires.jl optional dependency handling is by far and away the main source of loading time issues in Julia (because it blocks precompilation in many ways). So it's really killing two birds with one stone: decreasing package load times by about 99% (that's not even a joke, it's the huge majority of the time for most packages which are not StaticArrays.jl) while making version dependencies stricter. And now you know what I'm doing this week and what the next blog post will be on haha.

What are some alternatives?

When comparing Distributions.jl and Optimization.jl you can also consider the following projects:

MLJ.jl - A Julia machine learning framework

Petalisp - Elegant High Performance Computing

HypothesisTests.jl - Hypothesis tests for Julia

StatsBase.jl - Basic statistics for Julia

OffsetArrays.jl - Fortran-like arrays with arbitrary, zero or negative starting indices.

Lux.jl - Explicitly Parameterized Neural Networks in Julia

avm - Efficient and expressive arrayed vector math library with multi-threading and CUDA support in Common Lisp.

StaticLint.jl - Static Code Analysis for Julia

Enzyme.jl - Julia bindings for the Enzyme automatic differentiator

diffrax - Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. https://docs.kidger.site/diffrax/