CUDA.jl VS cupynumeric

Compare CUDA.jl vs cupynumeric and see what are their differences.

cupynumeric

An Aspiring Drop-In Replacement for NumPy at Scale (by nv-legate)
CodeRabbit: AI Code Reviews for Developers
Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
coderabbit.ai
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
CUDA.jl cupynumeric
15 10
1,263 844
2.3% 2.6%
9.5 2.2
7 days ago 2 days ago
Julia Python
GNU General Public License v3.0 or later Apache License 2.0
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

CUDA.jl

Posts with mentions or reviews of CUDA.jl. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-01-01.

cupynumeric

Posts with mentions or reviews of cupynumeric. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-09-20.
  • CuPy: NumPy and SciPy for GPU
    8 projects | news.ycombinator.com | 20 Sep 2024
    If you like cupy, definitely checkout the Multinode Multi-gpu version, cuNumeric: https://github.com/nv-legate/cunumeric

    Would love to get any feedback from the community.

  • Announcing Chapel 1.32
    6 projects | news.ycombinator.com | 9 Oct 2023
  • Is Parallel Programming Hard, and, If So, What Can You Do About It? [pdf]
    4 projects | news.ycombinator.com | 19 Feb 2023
    I am biased because this is my research area, but I have to respectfully disagree. Actor models are awful, and the only reason it's not obvious is because everything else is even more awful.

    But if you look at e.g., the recent work on task-based models, you'll see that you can have literally sequential programs that parallelize automatically. No message passing, no synchronization, no data races, no deadlocks. Read your programs as if they're sequential, and you immediately understand their semantics. Some of these systems are able to scale to thousands of nodes.

    An interesting example of this is cuNumeric, which allows you to take sequential Python programs that use NumPy, and by changing one line (the import statement), run automatically on clusters of GPUs. It is 100% pure awesomeness.

    https://github.com/nv-legate/cunumeric

    (I don't work on cuNumeric, but I do work on the runtime framework that cuNumeric uses.)

  • GPT in 60 Lines of NumPy
    9 projects | news.ycombinator.com | 9 Feb 2023
    I know this probably isn't intended for performance, but it would be fun to run this in cuNumeric [1] and see how it scales.

    [1]: https://github.com/nv-legate/cunumeric

  • Dask – a flexible library for parallel computing in Python
    8 projects | news.ycombinator.com | 17 Nov 2021
    If you want built-in GPU support (and distributed), you should check out cuNumeric (released by NVIDIA in the last week or so). Also avoids needing to manually specify chunk sizes, like it says in a sibling comment.

    https://github.com/nv-legate/cunumeric

  • Julia is the better language for extending Python
    13 projects | news.ycombinator.com | 19 Apr 2021
    Try dask

    Distribute your data and run everything as dask.delayed and then compute only at the end.

    Also check out legate.numpy from Nvidia which promises to be a drop in numpy replacement that will use all your CPU cores without any tweaks on your part.

    https://github.com/nv-legate/legate.numpy

  • Learning more about HPC as a python guy
    1 project | /r/HPC | 19 Apr 2021
    Something for the HPC tools category: https://github.com/nv-legate/legate.numpy
  • Unifying the CUDA Python Ecosystem
    13 projects | news.ycombinator.com | 16 Apr 2021
    You might be interested in Legate [1]. It supports the NumPy interface as a drop-in replacement, supports GPUs and also distributed machines. And you can see for yourself their performance results; they're not far off from hand-tuned MPI.

    [1]: https://github.com/nv-legate/legate.numpy

    Disclaimer: I work on the library Legate uses for distributed computing, but otherwise have no connection.

  • Legate NumPy: An Aspiring Drop-In Replacement for NumPy at Scale
    1 project | news.ycombinator.com | 13 Apr 2021

What are some alternatives?

When comparing CUDA.jl and cupynumeric you can also consider the following projects:

GPUCompiler.jl - Reusable compiler infrastructure for Julia GPU backends.

cupy - NumPy & SciPy for GPU

awesome-quant - A curated list of insanely awesome libraries, packages and resources for Quants (Quantitative Finance)

numba - NumPy aware dynamic Python compiler using LLVM

CudaPy - CudaPy is a runtime library that lets Python programmers access NVIDIA's CUDA parallel computation API.

grcuda - Polyglot CUDA integration for the GraalVM

CodeRabbit: AI Code Reviews for Developers
Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
coderabbit.ai
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured

Did you know that Julia is
the 44th most popular programming language
based on number of references?